4 research outputs found

    Aquaculture for income and nutrition: Final report

    Get PDF
    The United States Agency for International Development-Aquaculture for Income and Nutrition (USAID-AIN) project, implemented by WorldFish, emphasized technology development for improved fish strains, and capacity building in hatcheries and nurseries for wider dissemination and uptake among small- and medium-scale household and commercial producers. Improving nutritional benefits from household aquaculture investment was also an important activity of the project. Specifically, AIN aimed to increase aquaculture production by developing hatcheries and nurseries, disseminating improved fish and shrimp seed, enhancing farm management skills of smallholder farmers, promoting new technologies to expand commercial aquaculture, developing backward and forward market linkages, supporting policy reform and building capacity of the public and private sectors, which resulted in increased productivity and revenue for farmers. This report also highlights the major achievements of the AIN project between 2011 and 2016

    Theoretical and technological building blocks for an innovation accelerator

    Get PDF
    The scientific system that we use today was devised centuries ago and is inadequate for our current ICT-based society: the peer review system encourages conservatism, journal publications are monolithic and slow, data is often not available to other scientists, and the independent validation of results is limited. Building on the Innovation Accelerator paper by Helbing and Balietti (2011) this paper takes the initial global vision and reviews the theoretical and technological building blocks that can be used for implementing an innovation (in first place: science) accelerator platform driven by re-imagining the science system. The envisioned platform would rest on four pillars: (i) Redesign the incentive scheme to reduce behavior such as conservatism, herding and hyping; (ii) Advance scientific publications by breaking up the monolithic paper unit and introducing other building blocks such as data, tools, experiment workflows, resources; (iii) Use machine readable semantics for publications, debate structures, provenance etc. in order to include the computer as a partner in the scientific process, and (iv) Build an online platform for collaboration, including a network of trust and reputation among the different types of stakeholders in the scientific system: scientists, educators, funding agencies, policy makers, students and industrial innovators among others. Any such improvements to the scientific system must support the entire scientific process (unlike current tools that chop up the scientific process into disconnected pieces), must facilitate and encourage collaboration and interdisciplinarity (again unlike current tools), must facilitate the inclusion of intelligent computing in the scientific process, must facilitate not only the core scientific process, but also accommodate other stakeholders such science policy makers, industrial innovators, and the general public
    corecore