18 research outputs found

    A Case Study on Moisture Problems and Building Defects

    Get PDF
    AbstractHospital buildings are one of the complicated buildings that normally associate with a moisture problem. Besides environment factor, the different operation hour, poor workmanship and improper waterproofing installation also contributes to the moisture problems. Controlling the moisture problems seem to be vital in ensuring the building functionality. This study identifies the moisture problems and it's causes for the Hospital buildings in Malaysia. Based on various records obtained, this study discusses the defects according to four major building elements that are ceiling, wall, floor and roof. This paper concludes that the identified defects have great potential to affect the hospital building function

    Effect of Solid-To-Liquids and Na2SiO3-To-NaOH Ratio on Metakaolin Membrane Geopolymers

    No full text
    Geopolymer is synthesized by polycondensation of SiO4 and AlO4 aluminosilicate complexes, tetrahedral frames linked with shared sialate oxygen. This paper studies the effect of the solids-to-fluids (S/L) and Na2SiO3/NaOH proportions on the preparing of metakaolin inorganic membrane geopolymer. By consolidating a mixture of metakaolin with sodium hydroxide, sodium silicate and foaming agent, the geopolymer membrane was made in required shape about 1 cm and cured at 80°C for 24 hours. After the curing process, the properties of the samples were tested on days 7. Sodium silicate (Na2SiO32SiO

    Phase Analysis of Different Liquid Ratio on Metakaolin/Dolomite Geopolymer

    No full text
    Geopolymer is widely studied nowadays in various scope of studies. Some of the ongoing studies are the study of the various materials towards the geopolymer strength produced. Meanwhile, some of the studies focus on the mixing of the geopolymer itself. This paper discussed the phase analysis of metakaolin/dolomite geopolymer for different solid to the liquid ratio which was, 0.4, 0.6, 0.8, and 1.0, and the properties that affected the geopolymer based on the phases. The constant parameters in this study were the percentage of metakaolin and dolomite used. The metakaolin used was 80% meanwhile dolomite usage was 20%. Besides that, the molarity of NaOH used is 10M and the alkaline activator ratio used is 2.0. All the samples were tested at 28 days of curing. The results show that the 0.8 solid to the liquid ratio used gave better properties compare to other solid to liquid ratio. The phases analyzed were quartz, sillimanite, mullite, and faujasite. The 0.8 S/L ratio shows the better properties compared to others by the test of phase analysis, compressive strength morphology analysis, and functional group analysis

    Synthesis of Metakaolin Based Alkali Activated Materials as an Adsorbent at Different Na2SiO3/NaOH Ratios and Exposing Temperatures for Cu2+ Removal

    No full text
    Water contamination is a major issue due to industrial releases of hazardous heavy metals. Copper ions are among the most dangerous heavy metals owing to their carcinogenicity and harmful effects on the environment and human health. Adsorption of copper ions using alkali activated materials synthesized through the polycondensation reaction of an alkali source and aluminosilicates is the most promising technique, and has a high adsorption capability owing to a large surface area and pore volume. This research focuses on the effect of the alkaline activator ratio, which is a sodium silicate to sodium hydroxide ratio. Various exposing temperatures on metakaolin based alkali activated materials on a surface structure with excellent functional properties can be used as adsorbent materials for the removal of copper ions. A variety of mix designs were created with varying sodium silicate to sodium hydroxide ratios, with a fixed sodium hydroxide molarity, metakaolin to alkali activator ratio, hydrogen peroxide, and surfactant content of 10 M, 0.8, 1.00 wt%, and 3.0 wt%, respectively. Most wastewater adsorbents need high sintering temperatures, requiring an energy-intensive and time-consuming manufacturing process. In this way, metakaolin-based alkali activated materials are adsorbent and may be produced easily by solidifying the sample at 60 °C without using much energy. The specific surface area, water absorption, microstructure, phase analysis, functional group analysis, and adsorption capability of copper ions by metakaolin based alkali activated materials as adsorbents were evaluated. The water absorption test on the samples revealed that the sodium silicate to sodium hydroxide 0.5 ratio had the highest water absorption percentage of 36.24%, superior pore size distribution, and homogeneous porosity at 60 °C, with a surface area of 24.6076 m2/g and the highest copper ion uptake of 63.726 mg/g with 95.59% copper ion removal efficiency at adsorption condition of pH = 5, a dosage of 0.15 g, 100 mg/L of the initial copper solution, the temperature of 25 °C, and contact time of 60 min. It is concluded that self-supported metakaolin based alkali activated material adsorbents synthesized at low temperatures effectively remove copper ions in aqueous solutions, making them an excellent alternative for wastewater treatment applications

    Synthesis of Metakaolin Based Alkali Activated Materials as an Adsorbent at Different Na2SiO3/NaOH Ratios and Exposing Temperatures for Cu2+ Removal

    Get PDF
    Water contamination is a major issue due to industrial releases of hazardous heavy metals. Copper ions are among the most dangerous heavy metals owing to their carcinogenicity and harmful effects on the environment and human health. Adsorption of copper ions using alkali activated materials synthesized through the polycondensation reaction of an alkali source and aluminosilicates is the most promising technique, and has a high adsorption capability owing to a large surface area and pore volume. This research focuses on the effect of the alkaline activator ratio, which is a sodium silicate to sodium hydroxide ratio. Various exposing temperatures on metakaolin based alkali activated materials on a surface structure with excellent functional properties can be used as adsorbent materials for the removal of copper ions. A variety of mix designs were created with varying sodium silicate to sodium hydroxide ratios, with a fixed sodium hydroxide molarity, metakaolin to alkali activator ratio, hydrogen peroxide, and surfactant content of 10 M, 0.8, 1.00 wt%, and 3.0 wt%, respectively. Most wastewater adsorbents need high sintering temperatures, requiring an energy-intensive and time-consuming manufacturing process. In this way, metakaolin-based alkali activated materials are adsorbent and may be produced easily by solidifying the sample at 60 °C without using much energy. The specific surface area, water absorption, microstructure, phase analysis, functional group analysis, and adsorption capability of copper ions by metakaolin based alkali activated materials as adsorbents were evaluated. The water absorption test on the samples revealed that the sodium silicate to sodium hydroxide 0.5 ratio had the highest water absorption percentage of 36.24%, superior pore size distribution, and homogeneous porosity at 60°C, with a surface area of 24.6076 m2/g and the highest copper ion uptake of 63.726 mg/g with 95.59% copper ion removal efficiency at adsorption condition of pH = 5, a dosage of 0.15 g, 100 mg/L of the initial copper solution, the temperature of 25 °C, and contact time of 60 min. It is concluded that self-supported metakaolin based alkali activated material adsorbents synthesized at low temperatures effectively remove copper ions in aqueous solutions, making them an excellent alternative for wastewater treatment applications

    The Effect of Different Ratio Bottom Ash and Fly Ash Geopolymer Brick on Mechanical Properties for Non-loading Application

    No full text
    This paper studies the finding of strength and water absorption of geopolymer bricks using bottom ash and fly ash as a geopolymer raw material for non-loading application with minimum strength. The study has been conducted to produce bottom ash and fly ash geopolymer bricks by varying the ratio of fly ash-to-bottom ash, solid-to-liquid and sodium silicate (Na2SiO3)-to-sodium hydroxide (NaOH) in the mixing process. The compressive strength range between 3.8-4.5 MPa was obtained due to the minimum strength of non-loading application with 70°C curing temperature within 24 hours at 7 days of ageing. The optimum ratio selected of bottom ash-to-fly ash, solid-to-liquid and Na2SiO3-to-NaOH are 1:2, 2.0 and 4.0 respectively. The water absorption result is closely related to the amount of bottom ash used in the mix design

    The Effect of Different Ratio Bottom Ash and Fly Ash Geopolymer Brick on Mechanical Properties for Non-loading Application

    No full text
    This paper studies the finding of strength and water absorption of geopolymer bricks using bottom ash and fly ash as a geopolymer raw material for non-loading application with minimum strength. The study has been conducted to produce bottom ash and fly ash geopolymer bricks by varying the ratio of fly ash-to-bottom ash, solid-to-liquid and sodium silicate (Na2SiO3)-to-sodium hydroxide (NaOH) in the mixing process. The compressive strength range between 3.8-4.5 MPa was obtained due to the minimum strength of non-loading application with 70°C curing temperature within 24 hours at 7 days of ageing. The optimum ratio selected of bottom ash-to-fly ash, solid-to-liquid and Na2SiO3-to-NaOH are 1:2, 2.0 and 4.0 respectively. The water absorption result is closely related to the amount of bottom ash used in the mix design

    Influence of foaming agent/water ratio and foam/geopolymer paste ratio to the properties of fly ash-based lightweight geopolymer for brick application

    No full text
    Nowadays, the demand for lightweight building materials has been growing worldwide. This paper presents an investigation on the use of waste materials of fly ash as a source materials for the production of lightweight geopolymer by using foaming agents. The key properties for the foamed geopolymer namely density, compressive strength, and water absorption were investigated. The chemical composition of materials and morphology analysis were studied to find the microstructure properties of foamed geopolymer. The foamed geopolymer were prepared by combination of 12 M Sodium Hydroxide (NaOH) solution and Sodium Silicate (Na2SiO3) solution. The ratio of Na2SiO3/NaOH and ratio of fly ash/alkaline activator were kept constant at 2.5 and 2.0, by mass respectively. The effect of different ratio of foaming agent/water and foam/geopolymer paste were investigated at 7 days of ageing and cured at 80°C for 24 hours. In general, the results showed that the fly ash-based lightweight geopolymer has good potential as brick applicatio

    The Effect of Different Ratio Bottom Ash and Fly Ash Geopolymer Brick on Mechanical Properties for Non-loading Application

    No full text
    This paper studies the finding of strength and water absorption of geopolymer bricks using bottom ash and fly ash as a geopolymer raw material for non-loading application with minimum strength. The study has been conducted to produce bottom ash and fly ash geopolymer bricks by varying the ratio of fly ash-to-bottom ash, solid-to-liquid and sodium silicate (Na2SiO3)-to-sodium hydroxide (NaOH) in the mixing process. The compressive strength range between 3.8-4.5 MPa was obtained due to the minimum strength of non-loading application with 70°C curing temperature within 24 hours at 7 days of ageing. The optimum ratio selected of bottom ash-to-fly ash, solid-to-liquid and Na2SiO3-to-NaOH are 1:2, 2.0 and 4.0 respectively. The water absorption result is closely related to the amount of bottom ash used in the mix design

    Assessment of Geopolymer Concrete for Underwater Concreting Properties

    No full text
    For ages, concrete has been used to construct underwater structures. Concrete laying underwater is a very complex procedure important to the success or failure of underwater projects. This paper elucidates the influence of alkali activator ratios on geopolymers for underwater concreting; focusing on the geopolymer concrete synthesized from fly ash and kaolin activated using sodium hydroxide and sodium silicate solutions. The geopolymer mixtures were designed to incorporate multiple alkali activator ratios to evaluate their effects on the resulting geopolymers’ properties. The fresh concrete was molded into 50 mm cubes in seawater using the tremie method and tested for its engineering properties at 7 and 28 days (curing). The control geopolymer and underwater geopolymers’ mechanical properties, such as compressive strength, water absorption density, and setting time were also determined. The differences between the control geopolymer and underwater geopolymer were determined using phase analysis and functional group analysis. The results show that the geopolymer samples were optimally strengthened at a 2.5 alkali activator ratio, and the mechanical properties of the control geopolymer exceeded that of the underwater geopolymer. However, the underwater geopolymer was determined to be suitable for use as underwater concreting material as it retains 70% strength of the control geopolymer
    corecore