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Abstract: Water contamination is a major issue due to industrial releases of hazardous heavy metals.
Copper ions are among the most dangerous heavy metals owing to their carcinogenicity and harmful
effects on the environment and human health. Adsorption of copper ions using alkali activated
materials synthesized through the polycondensation reaction of an alkali source and aluminosilicates
is the most promising technique, and has a high adsorption capability owing to a large surface
area and pore volume. This research focuses on the effect of the alkaline activator ratio, which is a
sodium silicate to sodium hydroxide ratio. Various exposing temperatures on metakaolin based alkali
activated materials on a surface structure with excellent functional properties can be used as adsorbent
materials for the removal of copper ions. A variety of mix designs were created with varying sodium
silicate to sodium hydroxide ratios, with a fixed sodium hydroxide molarity, metakaolin to alkali
activator ratio, hydrogen peroxide, and surfactant content of 10 M, 0.8, 1.00 wt%, and 3.0 wt%,
respectively. Most wastewater adsorbents need high sintering temperatures, requiring an energy-
intensive and time-consuming manufacturing process. In this way, metakaolin-based alkali activated
materials are adsorbent and may be produced easily by solidifying the sample at 60 ◦C without
using much energy. The specific surface area, water absorption, microstructure, phase analysis,
functional group analysis, and adsorption capability of copper ions by metakaolin based alkali
activated materials as adsorbents were evaluated. The water absorption test on the samples revealed
that the sodium silicate to sodium hydroxide 0.5 ratio had the highest water absorption percentage of
36.24%, superior pore size distribution, and homogeneous porosity at 60 ◦C, with a surface area of
24.6076 m2/g and the highest copper ion uptake of 63.726 mg/g with 95.59% copper ion removal
efficiency at adsorption condition of pH = 5, a dosage of 0.15 g, 100 mg/L of the initial copper
solution, the temperature of 25 ◦C, and contact time of 60 min. It is concluded that self-supported
metakaolin based alkali activated material adsorbents synthesized at low temperatures effectively
remove copper ions in aqueous solutions, making them an excellent alternative for wastewater
treatment applications.

Keywords: adsorption; alkali activated materials; waste water; exposing temperatures; removal

1. Introduction

The existence in industries of toxic metals created by mineral processing causes a
significant threat to the water environment [1]. As a result, serious rules are necessary
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for many countries to effectively recover harmful metal ions from wastewater prior to
their fast and uncontrolled discharge into the natural environment. Metal ions are often
non-biodegradable compounds, and large concentrations may harm humans, animals, and
the environment. The accumulation of heavy metals in the human body as a consequence
of long-term exposure, for example, may cause major health concerns such as organ
malfunction, Alzheimer’s disease, and anaemia [2–4]. Therefore, to overcome the water
cleaning environment, removing metal ions from industrial wastewater is important to
minimize amounts of heavy metals.

Among the heavy metals, copper is widely used in industry. It is accumulated in waste
streams from such industries as mining, electrical equipment, batteries and wires, pipes,
paper and fertilizers, alloys, antifouling paints, and wood preservatives [5,6]. Copper is
a persistent, bio-accumulative, and toxic chemical, so it is considered the second most
toxic metal to aquatic organisms after mercury [7–9]. Long-term and continuous exposure
to copper and nickel in the body causes nausea, vomiting, headaches, diarrhea, respira-
tory problems, liver and kidney failure, nervous system damage, cancer, and death in
humans [10–13]. The US Environmental Protection Agency (USEPA) and the World Health
Organization (WHO) established the allowable Cu (II) ion in water levels at 1.3 mg/L and
2.0 mg/L, respectively, due to their major effects [14–16]. Since they are nondegradable
and have the propensity to bioaccumulate, it is important to find efficient ways to eliminate
them from the environment.

Chemical precipitation, reverse osmosis, coagulation, ion exchange, electrochemical
treatment technologies, and membrane filtration are recent methods for removing metal
particles from wastewater [17–19]. Chemical and electrical technologies, on the other hand,
are low efficiency, have a high energy requirement, require toxic substance precipitation,
and are cost-ineffective [20,21]. As a result, using locally available materials as adsorbents
for copper ion removal is becoming extremely prevalent. Adsorption is a flexible method
of separating a solute from a solution by attaching it to the surface of an adsorbent that
delivers high-quality treated effluent in various situations [20,22–25].

Various materials, such as zeolites, active carbon, biomaterials, and clay minerals may
be utilized as adsorbents for organics and metal ions to filter wastewater [26,27]. Alkali
activated materials (AAMs), or geopolymers that are prepared from precursor aluminosili-
cates, are a newer technology for heavy metal adsorption from wastewater, composed of
silica and alumina near zeolite material to replace conventional adsorbents [12,28]. Alkali
activated materials (AAMs) are more environmentally friendly than other materials due
to their sustainable production process, which involves less energy usage and less waste
stream or byproduct consumption [29]. Between the tetrahedron [AlO4] and [SiO4] units,
AAMs are a kind of cross-linked long-chain inorganic polymer material with outstandingly
high strength, corrosion resistance, fire resistance, and long life properties [30,31]. AAMs
are porous amorphous gels that may also serve as adsorbents, allowing them to absorb
heavy metal ions [32,33]. In addition, porous adsorbents are the most efficient, dependable,
straightforward, and cost-effective sorption [34–36]. AAM adsorbents have a significant
sorption capacity in determining their effectiveness in wastewater treatment for a variety
of heavy metals, due to their unique physicochemical features, such as surface chemistry,
porous structure with both high internal surface area and porosity, and long-lasting, eco-
friendly cementitious material [26,37,38].

Subsequently, the chemical and mineralogical composition of the raw materials, the
kind of alkaline activators, their concentration, and the ratio of main chemical activators
such as Na2O/SiO2, SiO2/Al2O3 are all parameters that influence alkali activation [39–41].
In that sense, the main objective of this study is to study the porous distribution behaviour
for heavy metal adsorption. The optimization of mixing parameters, which is the sodium
silicate to sodium hydroxide (Na2SiO3/NaOH) ratio of metakaolin based alkali activated
materials, was investigated as mixing formulation and is known to crucially affect the
physical and mechanical properties of geopolymer. The optimum mixing parameter was
selected based on the highest percentage of water absorption; the relationship between
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water absorption and porosity increases exponentially as the pore size of the structure
grows [42,43].

In general, the excellent copper ion adsorption capacities in AAMs are influenced by
physical characteristics such as surface area, pore volume, and pore size distribution. These
unique characteristics depend on the type of raw materials employed for the preparation
of AAM adsorbents and the method of activation. Much recent research has focused on
generating adsorbent materials with an interconnected cellular network using a saponi-
fication or gel-casting combination approach. However, the abovementioned techniques
are time-consuming and unsuitable for mass production [44,45]. A directly pore-forming
agent was mixed with a surfactant and a specific catalytic acid component to make hybrid
foams with interconnected porosity and low density. As a chemical blowing agent for
producing high porosity components, hydrogen peroxide (H2O2), which produces air or
gas via direct foaming, is increasingly gaining popularity. This novel material is employed
in wastewater treatment systems due to the high copper removal effectiveness of the ad-
sorption approach, which eliminates the need for large volumes of commercial inorganic
precipitants, produces no sludge, and does not require the use of support materials. Fur-
thermore, the prepared metakaolin based alkali activated materials were discovered to
be highly effective separable materials for the selective removal of Cu(II) ions from water
samples, and were considered to be the most efficient, dependable, simple, and economical
adsorbents for the sorption that presented improved capacities of Cu(II) ions. Therefore,
this study synthesised novel metakaolin based alkali activated materials and conjugated
onto porous metakaolin based AAM adsorbents for simultaneous hazardous Cu(II) ion
detection and removal from contaminated waste samples. The ligand of metakaolin based
AAM adsorbents was acknowledged as having an extremely large surface area and huge
pore volumes, implying a promising adsorbent material for Cu(II) ion capture from an
aqueous solution. Metakaolin based alkali activated materials can detect the Cu(II) ion and
adsorb with a greater adsorption capability than other materials.

2. Methodology
2.1. Materials
2.1.1. Metakaolin

The metakaolin with the total SiO2 and Al2O3 composition of 91.4 wt% was obtained
at 850 ◦C at a 5 ◦C/min heating rate with the calcination of 2 h of kaolin. The used kaolin
was purchased from Kaolin (Malaysia) Sdn. Bhd., Bidor, Perak, Malaysia. The internal
composition of the kaolin used as powder had an average of 2% moisture density, at least
40% lower than 2 µm.

2.1.2. Sodium Hydroxide

The sodium hydroxide (NaOH) solution was made by dissolving a 99% pure NaOH
pellet supplied by Brenntag Sdn. Bhd., Shah Alam, Selangor, Malaysia, in 1000 mL of dis-
tilled water in a volumetric flask at a concentration of 10 M. As researched by Ain et al. [46],
10 M was selected as the concentration of NaOH to be fixed, which has high porosity and
low density with suitable compressive strength to be utilized for metakaolin based alkali
activated materials as the copper ions adsorbent in this research.

2.1.3. Sodium Silicate

The Na2SiO3 (technical grade) was provided by South Pacific Chemical Industries Sdn.
Bhd. (SCPI) of Malaysia, with a composition of 30.1% SiO2, 9.4% Na2O, and 60.5% H2O
(SiO2/Na2O ratio of 3.20). Na2SiO3 is a colourless fluid that dissolves readily in water.

2.1.4. Foaming Agent

To produce metakaolin based alkali activated materials as adsorbent for copper re-
moval, 1.00 wt% by mass of metakaolin of hydrogen peroxide (H2O2) was added as a
foaming agent that was intended to develop pores inside the specimen. A 3 wt% hydrogen
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peroxide (diluted from 30 wt% H2O2, Sigma Aldrich, Malaysia) solution was formulated
for high stability and long-term storage with strong oxidizing properties. Moreover, Tween
80 or polysorbate 80 at a composition of 70% oleic acid (balance primarily linoleic, palmitic,
and stearic acids) from Sigma Aldrich, Malaysia was mixed as a surfactant and is commonly
used as a function to decrease surface tension and drainage of alkali activated materials.

2.2. Methods
2.2.1. Preparation of Metakaolin Geopolymer Adsorbents

Metakaolin powder was mixed with an alkaline activator solution containing sodium
hydroxide (NaOH) and sodium silicate (Na2SiO3) at a fixed 0.8 solid-to-liquid ratio, by
mass, which was selected based on previous studies. The sodium silicate to sodium
hydroxide ratio in this investigation was set at 0.25, 0.5, 0.75, 1.0, and 1.25. The molarity
used for sodium hydroxide was fixed at 10 M, which had been left at room temperature
for 24 h. For the first stage, hydrogen peroxide content was fixed at 1.00 wt% by mass
of solid and 3.0 wt% of Tween 80 by mass of solid as a surfactant and was successively
added to the suspension. The mixture was mixed using a mechanical stirrer until it became
a homogenous paste. The metakaolin based alkali activated materials were formed into
the required shape and size, a sphere shape of 1–2 cm. The samples were put in a tray
to keep inside the oven. In addition, the fresh geopolymer paste from each parameter
prepared was poured into high-density polyethylene (HDPE) mould with the dimensions
of 50 mm × 50 mm × 50 mm for compressive strength testing. The moulded samples were
vibrated for 2 min on the vibration table to remove entrapped air. The tray was covered
with wrapping plastic to prevent the loss of humidity in the metakaolin-based AAMs.
Then, the samples were cured at 60 ◦C for 24 h for polycondensation during the alkali
activation process. Next, the selected mix design was prepared with various exposing
temperatures. The samples were sealed with wrapping plastic to prevent moisture loss
on metakaolin based alkali activated materials. The samples were evaluated at several
curing temperatures, including room temperature (25, 60, 100, 500, and 900 ◦C) to obtain
excellent characteristics of metakaolin-based alkali activated materials as adsorbent for
copper ions. The samples were kept sealed at room temperature for 7 days before testing.
This process underwent crush and sieve through a 150 µm particle size sieve to become
powder adsorbent. The smaller the adsorbent particle size, the larger the surface area.
Smaller particles also reviewed can increase the effectiveness of adsorption.

2.2.2. Water Absorption Test

Water absorption was conducted according to the standard research methodology of
ASTM C 642 [47]. Three samples were absorbed in water at room temperature for 24 h.
Then, the samples were removed with a wet cloth and allowed to drain before the saturated
weight was recorded. After that, the sample was dried first in the oven at a temperature of
105 ◦C for 24 h and then the oven dry weight of the metakaolin based AAM was recorded.
Water absorption was determined by Equation (1) below:

Water absorption (%) =
Ws − Wd

Wd
× 100% (1)

where Ws represents the saturated weight, which is the weight of metakaolin based AAMs
after 24 h in the water, and Wd represents the original dry weight (g).

2.2.3. Density Test

The density test was examined by densimeter to measure the weight of metakaolin
based AAMs in air and water following ASTM D792 [48]. The specific gravity, or density in
gram per cubic centimetre unit of a solid, is a property that can be conveniently measured
to identify a material, track physical changes in a sample, indicate the degree of uniformity
among different sampling units or specimens, or determine the average density of an item.
The samples were kept at room temperature for a total of 7 days until the curing procedure
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was completed before the test could be completed successfully. Three samples of each
metakaolin based AAMs were measured, and an average of three results were reported.

2.2.4. Compressive Strength Test

Compressive strength measures the maximum compressive load a material can bear
before fracturing. It is an important performance that provides an indicator of its quality
and determines the strength developed by the alkali activated materials. Thus, the perfor-
mances of alkali activated materials with various sodium silicate to sodium hydroxide ratios
(Na2SiO3/NaOH), curing, and high heat treatments on metakaolin based alkali activated
materials was determined in terms of compressive strength. The compressive strength were
evaluated using a Universal Testing Machine (UTM), Shimadzu Japan, UH-1000 kN, with a
loading rate of 0.5 MPa/s. Compressive strength was performed on cubes with 50 × 50 ×
50 mm3 according to ASTM C109 [49]. The samples were tested at 7 days, and already had
their early strength. Three specimens were tested to determine the compressive strength of
metakaolin based AAMs, and the mean value of the three samples was reported.

2.2.5. Characterization of Metakaolin Based Alkali Activated Materials

The chemical composition of raw material shown in Table 1 was determined by using
PANanalytic PW4030 X-ray fluorescence (XRF) spectrometer with model type MiniPAL-4
(Malvern Panalytical, Worcestershire, UK) using an energy dispersive microprocessor
controlled analytical instrument. The sample was loaded in the spectrometer chamber and
operated at a maximum current of 1 mA to generate X-ray and a maximum voltage of
30 kV to stimulate the sample. Scanning electron microscopy (SEM) was conducted for
morphology analysis using TESCAN VEGA’s 4th generation Scanning Electron Microscope
(SEM) (Brno, Czech Republic) with a tungsten filament electron source and combines SEM
imaging. All sample preparation is solid and coated with gold using Sputter Coater NS800
model. The signals generated during analysis produced a two-dimensional image and
revealed information about the sample, including the orientation of materials making
up the sample and the external morphology (texture) at a magnification level of ×500
scanning voltage. Phase analysis to investigate the crystalline material structure, including
atomic arrangement, crystalline size, and imperfections, was tested by using XRD powder
diffractograms. Metakaolin based AAMs at different curing and heat exposure at elevated
temperature samples were analyzed using a XRD-6000 Shimadzu X-Ray Diffractometer
(Columbia City, IN, USA) with Cu Kα radiation produced at 30 mA and 40 kV. The
XRD data were collected at 2θ values from 10 to 80◦. The specific surface area, pore
volume, and pore size distribution were determined by the Brunauer, Emmett and Teller
(BET) and Barrett, Joyner, and Halenda (BJH) methods, respectively, using a Micrometrics
Tristar II 3020 (Micromeritics Instrument Corporation, Norcross, GA, USA) volumetric
adsorption/desorption apparatus. Following ASTM D3663-20 [50], the amount of nitrogen
gas adsorbed by the sample at different low-pressure conditions was used to measure
the surface area of metakaolin AAMs. The degassing of nitrogen gas (N2) adsorption–
desorption isotherm was passed through the adsorbents at a liquid nitrogen temperature of
200 ◦C for 4 h. For analyzing the elemental distribution, microbeam energy dispersive X-ray
fluorescence spectroscopy (µ-XRF) was performed at the Beamline 6 of the Synchrotron
Light Research Institute (SLRI), Bangkok, Thailand. At Beamline 6, continuous synchrotron
radiation with an energy exceeding 2 keV and a beam diameter of 100 µm was employed.
The samples were positioned vertically on the holder, and high-precision motorized stages
were used to carry out the raster scanning. The experiment was carried out with a total
scan of 441 values in a helium gas atmosphere. PyMca software was used to demonstrate
the micro-XRF data.

2.2.6. Adsorption of Copper Ions Test

The metakaolin based alkali activated materials (AAMs) adsorbent was washed with
distilled water for about 1 h to avoid the effect of precipitation and excesses amount of
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sodium hydroxide on the samples, and dried under vacuum at 60 ◦C for 24 h. Then, 0.15 g of
dried samples of metakaolin based AAMs adsorbent at different curing and heat treatment
conditions were tested with 100 mg/L copper nitrate solution fixed at pH 5. This adsorption
test parameter followed Cheng et al., [51] and Ge et al. [52], and resulted in high copper
adsorption capacity and high removal efficiency by metakaolin geopolymer adsorbent. The
Erlenmeyer flasks were placed into an orbital shaker at room temperature, ~25 ◦C, with
a shaking speed of 250 shakes/min for 1 h. Samples were taken and analyzed for Cu2+

concentration using atomic absorption spectroscopy, AAS (Perkin Elmer, Llantrisant, UK).
The experiment was repeated three times for each condition to obtain the mean values. Five
standard solutions comprising 0, 0.5, 1.0, 1.5, and 2.0 mg/L of copper ion solution were
used to calibrate the AAS instrument, and the calibration curve’s correlation coefficient
was greater than 0.9999. Further, sample solutions with complex matrices were not used,
and no apparent matrix interference was observed.

3. Results and Discussion
3.1. Raw Material Characterization

In this investigation, X-ray fluorescence (XRF) examination was used to portray the
synthetic arrangement of every precursor raw material. Every composition of metakaolin
used is summed up by the XRF investigation result shown in Table 1.

Table 1. Chemical composition of metakaolin.

Number Component Wt%

1 Al2O3 34.7
2 SiO2 56.7
3 P2O5 1.68
4 K2O 0.607
5 CaO 0.700
6 TiO2 3.13
7 Fe2O3 2.09
8 CuO 0.0383
9 Ga2O3 0.0398
10 SrO 0.0530
11 ZrO2 0.199

Table 1 shows that the main constituents of metakaolin are Si and Al in structure,
with the chemical composition containing silica (SiO2) and alumina (Al2O3), which are
56.7 wt% and 34.7 wt%, correspondingly. There were small impurities of titanium (TiO2),
iron (Fe2O3), and phosphorus (P2O5) that equal to 3.13 wt%, 2.09 wt% and 1.68 wt%,
respectively. The total of these compositions is about 98.3 wt% and this indicates that this
metakaolin powder is pozzolans which exceed 70 wt%, as suggested for pozzolans to have
a good pozzolanic activity according to the ASTM C 618 standard specifications [53]. In
brief, pozzolanic materials, finely split siliceous particles or a combination of siliceous
and aluminous materials, react with calcium hydroxide (CH) during cement hydration to
generate calcium silicate hydrate (C-S-H) with excellent microstructure and mechanical
cementitious properties [54–57]. There was likewise a little hint of calcium (CaO), potassium
(K2O), zirconium (ZrO2), strontium (SrO), gallium (Ga2O3), and copper (CuO); it was not
so much critical of the fact that it had under 1 wt%.

Since the alkali activated materials are skeletal structures that form from the polycon-
densation of aluminosilicate materials, high silica, and alumina materials are appropriate
for binding action materials [58,59]. This rigid structure is the outcome of a process that
involves the complete dissolution of the aluminosilicate phase in alkali solution, which
generates two separate tetrahedral ends made of aluminosilicate, silicates (SiO4), and alu-
minates (AlO4) that are joined by oxygen atoms. Accordingly, two major phases, which
are aluminosilicate dissolution and separation into alumina and silicate end, and the poly-
condensation/polymerization stage, are likely to be produced based on the ratio of SiO2
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to Al2O3 in the raw material [20,40]. Therefore, the proportion of [SiO4]4− to [AlO4]5− is
one of the relevant metrics for evaluating the alkali activation process and the structural
properties of the resulting alkali activated materials. With higher Al and Si but lower Ca,
the supersaturating period is achieved at a longer time, allowing better workability and
greater reactivity [60,61]. Furthermore, Zahid et al. [60] reported the segments of Si and Al
to add to the creation of geopolymer power by geopolymerization of Al-Si, which happens
because of the utilization of alkaline activators and effective curing.

Scanning electron microscope analysis revealed the morphological form of pure crystal
in magnification at ×5000. The SEM image showed the characteristic morphology of the
original metakaolin in Figure 1, indicating that metakaolin is a heterogeneous material
possessing a dense matrix of irregularly shaped and flake-like particles.

Figure 1. SEM images and energy dispersive X-ray analysis (EDX) of metakaolin.

Similar observations were found by Jaya et al. [62,63], who presented that the metakaolin
has a flake-like structure, and Alouani et al. [64], who presented that the obtained metakaolin
is a heterogeneous material and consists of irregularly shaped particles. Flaky particles of
metakaolin observed provided a larger surface area and availability of more contact area
with water. This is also in line with Kara et al. [26], who reported that metakaolin has a large
specific surface area, and its particles are in flake shape.

Moreover, the elemental composition by Energy dispersive X-ray, EDX showed that the
major structure of metakaolin is made up of oxygen (51.63%), silica (23.06%) and alumina
(21.64%). Given the compound synthesis of metakaolin, the result reveals that they have
a significant measure of the content of silica and alumina, a substance rich in silica and
alumina, that can be categorized as a geopolymer source material.

3.2. Effect on Na2SiO3/NaOH Ratio to Metakaolin Based Alkali Activated Materials
3.2.1. Water Absorption Analysis

The water absorption of alkali activated metakaolin in units of percent (%) is depicted
in Figure 2. The highest water absorption was found at 0.5 Na2SiO3/NaOH ratio of 36.24%,
while the lowest was at 1.25 of Na2SiO3/NaOH ratio of 8.2%. The figure shows that the
water absorption slightly increased from 29.45% to 36.24%, as observed with increases in
Na2SiO3/NaOH ratio from 0.25 to 0.5. However, the water absorption was decreased with
the increase of the Na2SiO3/NaOH ratio from 0.5 to 1.25, which dropped by 28.04% to its
lowest point at 8.2%.
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Figure 2. The water absorption of metakaolin based alkali activated materials with different
Na2SiO3/NaOH ratios.

A decline in water absorption when increasing the sodium silicate to sodium hy-
droxide ratio influenced the workability of metakaolin based alkali activated materials.
Workability was identified as a property of fresh binder, which measures the ease with
which the fresh paste can be mixed, placed, consolidated, and finished. The increase in the
Na2SiO3/NaOH ratio was induced to decrease the workability and porosity of metakaolin
AAMs as liquid sodium silicate, generating high viscosity and density compared to NaOH
solution, concurrently improving the sodium silicate content, which reduced the workabil-
ity and porosity of alkali activated metakaolin.

Porosity gives materials important properties, such as low density (meaning lightweight)
and a large surface area to store molecules in the pores in line with these properties, which
are suitable for making AAM as adsorbent materials. Hossain et al. [65] mentioned that
water absorption mainly depends on capillary pore volume, and the volume of artificial
pores governs the compressive strength and density of the alkali activated materials.

3.2.2. Density and Compressive Strength Analysis

The densities of metakaolin based alkali activated materials with different Na2SiO3/NaOH
ratios are shown in Figure 3. Overall, the bulk density slightly decreased with increasing mix-
ing parameters, up from 0.25 to 0.5 Na2SiO3/NaOH ratio, then climbed until it reached the
highest density with 1.5375 g/cm3 at 1.00 of Na2SiO3/NaOH ratio. The lowest density of alkali
activated metakaolin was depicted at 0.5 of the Na2SiO3/NaOH ratio, which is 1.4816 g/cm3.
These density values were comparable to those reported by Kwek et al. [66] for POFA geopoly-
mer, which ranged from 1.658 to 1.741 g/cm3, and Hwang et al. [67] for fly ash and residual
rice husk ash-based geopolymers, which were 2.18 and 2.08 g/cm3, respectively.

According to this finding, the alkaline activator ratio of 0.50 had the least influence
on density. This might be a result of the highest water absorption with high porosity in
the samples. Boke et al. [68] also found that the density of the synthesized foamed alkali
activated materials increased with decreasing water absorption. Dehydroxylation and
crystallization phases formed during the alkali activation, bonding, and the presence of
a hydroxylase group (–OH) also influenced the samples’ densities. Hence, the increasing
density of alkali activated metakaolin exceeds 0.5 up to 1.0 Na2SiO3/NaOH ratio due
to the high dissolution of the metakaolin particles in the mixture obtained by higher
alkali content, resulting in denser microstructure in geopolymers. Furthermore, increasing
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sodium silicate content aided in the creation of alkali activated materials networks as well
as the condensation process of alkali activated metakaolin, resulting in higher density. This
conclusion also was supported by Alharbi et al. [69] and Dogan-Saglamtimur et al. [69].

Figure 3. The density and compressive strength of metakaolin based alkali activated materials with
various Na2SiO3/NaOH ratios.

Gradually, the compressive strength of metakaolin based alkali activated materials
depended on the water absorption and density of alkali activated materials. In general, the
graph shows that with increasing mixing parameters, the compressive strength declined
slightly at 0.25 to 0.5 Na2SiO3/NaOH ratio, then increased as the Na2SiO3/NaOH ratio in-
creased up to 1.25. The highest compressive strength was obtained by a 1.25 Na2SiO3/NaOH
ratio of 26.3625 MPa, while the minimum strength was obtained by a 0.5 Na2SiO3/NaOH
ratio of 20.975 MPa. This range of compressive strength value is acceptable for metakaolin
based alkali activated materials as an adsorbent. However, for the alkali activated metakaolin
with Na2SiO3/NaOH ratio above 0.5, the alkali activation or geopolymerization was not
favoured, and led to the formation of a sticky mixture and increased the viscosity of alkali
activated materials. This was attributed to the obvious inclusion of Na2SiO3, which served
as a coagulant to speed up dissolution during the alkali activation process and also served
as a polymerization intermediate or plasticizer and was denser, and resulted in an increase
in compressive strength when the alkaline activator ratio was increased.

3.2.3. Microstructure Analysis

Figure 4a–e illustrate the SEM micrograph of metakaolin based alkali activated materi-
als activated with various Na2SiO3/NaOH ratios at ×500. The microstructure of metakaolin
based alkali activated materials at the lowest Na2SiO3/NaOH ratios of 0.25 exhibited
markedly different microstructures compared with other ratios. It had loose matrices with
a large amounts of non-reacted and partially reacted metakaolin particles embedded in
poor matrices, as shown in Figure 4a. Then, the existence of pores contributed to the porous
structure, where they were largely affected and became lesser, or changed to irregularly
shaped pores, as the Na2SiO3/NaOH ratio increased, which increased the density of the
metakaolin based alkali activated materials.
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Figure 4. SEM micrograph of metakaolin based alkali activated materials at (a) 0.25, (b) 0.50, (c) 0.75,
(d) 1.00, and (e) 1.25 of Na2SiO3/NaOH ratios.

Figure 4b with 0.5 Na2SiO3/NaOH ratio revealed a more homogenous and continuous
microstructure, with regular pore shape distribution, which, as discussed, demonstrated
the highest percent of water absorption. In general, all the alkali activated metakaolin
have a generally homogeneous microstructure at increasing Na2SiO3/NaOH ratios of
0.50 up to 1.00. The presence of unreacted metakaolin particles was reduced, and the
matrices seemed to be dense, indicating greater binding between metakaolin and the
alkaline activator solution, resulting in an increase in compressive strength.

However, owing to the inadequate interaction of soluble species with metakaolin
particles with increasing water glass content, a high Na2SiO3/NaOH ratio of 1.25 causes
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the matrices to become less dense with less aluminosilicate matrix. This will result in
poor metakaolin particle disintegration and huge, irregularly shaped pores. Cracks also
appeared due to the incomplete reaction that occurred between the precursor materials
and the activator at the selected zone. As a result, the density and compressive density of
the structure declined.

3.3. Effect on Different Exposing Temperature to Metakaolin Based Alkali Activated Materials
3.3.1. Water Absorption Analysis

Figure 5 shows the water absorption values for the metakaolin based alkali activated
materials with different curing and high-temperature exposure, tested after 7 days. Samples
cured at 60 ◦C for 24 h give the highest value of water absorption at 36.24%. Due to their
greater apparent porosity, specimens that were cured at 60 ◦C showed the highest water
absorption value. The lowest water absorption, 16.73%, was discovered when samples
were kept at room temperature for 24 h. Figure 5 shows the water absorption of metakaolin
based alkali activated materials increases with increasing the curing temperature from
~25 ◦C to 60 ◦C, and declined when the samples were exposed at 100 ◦C and 500 ◦C, but
then went up to 24.08% when exposed to 900 ◦C.

Figure 5. Water absorption of metakaolin based alkali activated materials at different
exposing temperatures.

A decrease in water absorption from 36.24% to 20.76% was observed with increased
heat temperature exposure from curing at 60 °C to exposure at high temperature 500 ◦C.
Regardless of the high heat exposure approach from 500 to 900 ◦C, the water absorption
of alkali activated metakaolin dropped as the temperature rose. The reduction is due
to high heat shrinkage, which causes the hardened structure to become more compact,
lowering its permeable porosity. Meanwhile, when the temperature is exposed to 900 ◦C,
the microcracks and cracks in the samples become wider due to the high-temperature
exposure, increasing water absorption into the binder matrix. Samal et al. [70] claimed
that thermal cracking was attributable to a faster rate of geopolymerization in the samples,
resulting in extreme expansion when exposed to high temperature.

3.3.2. Density and Compressive Strength Analysis

Figure 6 showed the density of metakaolin based alkali activated with various exposing
temperatures and tested after 7 days. The trend of the density line graph was opposite to
the water absorption. The highest density was found in the samples cured at 60 ◦C, which
was 1.4816 g/cm3, while the lowest was the sample sintered at 900 ◦C, with 1.187 g/cm3.
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At first, the increment in density was exhibited as increasing curing temperature from
~25 ◦C to 60 ◦C. Then, as can be seen, it slightly went down with an increasing curing
temperature of 100 ◦C, and that led to a drop when exposed to 900 ◦C.

Figure 6. The density and compressive strength of metakaolin based alkali activated materials at
different exposing temperatures.

In general, raising the temperature from room temperature to 60 ◦C considerably
increased the density because the samples would give more dissolution of the metakaolin,
which would densify the microstructure of the geopolymer, as opposed to exposing it
to a ~25 ◦C initial curing temperature. The density of metakaolin based alkali activated
materials cured at 60 ◦C was more uniform than that of specimens exposed to higher
temperatures of 100 ◦C, 500 ◦C, and 900 ◦C. This might be due to the N-A-S-H gel forming
more effectively, resulting in a homogenous pore structure and absence of cracks at 60 ◦C
curing temperature.

Likewise, due to the presence of excess water from the foaming agent, the high
temperature caused the water to evaporate, which, consequently, produced cracks and
reduced the density of metakaolin based alkali activated materials. This is because the
foaming agent, which is hydrogen peroxide and tween 80 as a surfactant, was not involved
in alkali activation process. Skoczylas et al. [71] also reported that increasing the exposure
temperature caused the disintegration in the bonding network as well as the expansion of
the specimens, which was attributed to the reduced geopolymerisation process in the latter
stages and water loss due to evaporation during the reaction, which reduced the density at
high temperature.

Figure 6 also represented the influence of exposure to the elevated temperature on the
compressive strength of metakaolin based alkali activated materials. The results obtained
ranged from 10.338 MPa to 20.975 MPa; 20.975 MPa was the highest compressive strength
at 60 ◦C curing temperature, while 10.338 MPa was the lowest compressive strength after
being exposed at 900 ◦C. In general, the compressive strength was slightly increased from
~25 ◦C to 60 ◦C, and then fluctuated at 100 ◦C up to 900 ◦C. These elevated temperatures
resulted in physical and chemical transformations in the alkali activated materials. As the
curing temperature was set at ~25 ◦C, after curing for 24 h, it was not sufficient to remove
the unconjugated water, and the alkali activated material slurries were still gelatinous and
moist. Therefore, the compressive strength was lower because of the plentifully existing sol
phase and water in the system. This statement was also discussed by Azevedo et al. [72]. As
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the temperature rose up to 900 ◦C, the microcracks became wider and spread throughout
the whole surface of the specimen, resulting in a decrease in strength. Thermal cracking
was caused by a thermal mismatch in the alkaline activator metakaolin, which caused
microcracks to develop. From a compressive strength point of view, curing at 60 ◦C for 24 h
revealed the optimum strength for metakaolin based alkali activated materials.

3.3.3. Microstructure Analysis

SEM analysis clarified the microstructural or surface structure changes that occurred
when the samples were exposed to different temperatures, as depicted in Figure 7. As can
be seen, alkali activation products consist of a compacted alkali activated materials matrix,
a number of unreacted metakaolin particles, pores in various scales, and the formation
of cracks at room temperature curing conditions, as can be seen in Figure 7a. However,
the microstructure findings revealed that when the exposing temperature was raised, the
quantity of unreacted metakaolin particles was reduced. Up to 60 ◦C, the matrix in Figure 7b
seems heterogeneous, and more porous, and becomes denser as the aluminosilicate gel has
completely formed. According to Kong et al. [73] and Tamjidi et al. [74], adsorbents with
larger and wider porous surfaces capture more heavy metal ions, enhancing the potential
of the material for sorption.
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Figure 7. SEM micrograph of metakaolin based alkali activated materials at (a) room temperature,
(b) 60 ◦C, and (c) 900 °C exposure temperature.

In addition, the microstructure of metakaolin that has been alkali activated at higher
temperature (900 ◦C) is shown in Figure 7c. Typically, higher exposing temperatures
resulted in the appearance of the alkali activated metakaolin structure with a sponge-
like structure and smooth conglomerated surface. The thermal treatment temperature
subsequently caused visible cracking in the metakaolin-based alkali activated materials, as
well as irregularly shaped pores on the surface due to pore size shrinkage (Figure 7c). The
appearance of cracks in the structure was due to the loss of water with rising temperature
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exposure. Therefore, the strength of alkali activated metakaolin decreased, as shown in
Figure 6.

3.3.4. Phase Analysis

Figure 8 demonstrates the XRD pattern of metakaolin based alkali activated materials
at different temperature exposures. The XRD pattern of alkali activated metakaolin at
elevated temperatures with the best design shows quartz (SiO2) as the major mineral in
all samples. This reflection of quartz serves as the primary component of the flake-like
structure of metakaolin as a precursor detected by SEM, as discussed before. Overall, the
amorphous phase dominates the XRD pattern of metakaolin-based alkali activated materi-
als cured at room temperature and 60 ◦C. The amorphous halo and position were roughly
the same, but the halo peak’s height was reduced. This might indicate a nanostructural
change, such as gel disintegration or dissolution.

Figure 8. XRD patterns of metakaolin based alkali activated materials at different
temperature exposures.

Samples cured at 60 ◦C showed a content of quartz (SiO2) (ICDD reference: 01-083-0539)
as the major mineral at 2θ values of 26.593 ◦, and some minor minerals of muscovite
(KAl2(Si3Al) O10(OH,F)2) (ICDD reference: 01-075-0948) at 2θ values of 22.990◦ and 45.214◦,
and kaolinite (Al2Si2O5(OH)4) (ICDD reference: 01-075-1593) at 12.402◦, 38.558◦, and 55.517◦.
As per Salam et al. [75], Zhou et al. [76], and Xu et al. [77], muscovite is one of the micaceous
minerals that are highly degraded in nature and are good adsorbents of metals. This was
attributed to muscovite having perfect cleavage that allows the creation of large areas of
smooth surface in the atomic scale.

Further, the major peak of quartz crystal (ICDD reference: 01-085-1780) for the
metakaolin-based alkali activated materials exposed at 900 ◦C shifts to a lower angle,
whereas the other crystal phases gradually fade or even disappear. Due to thermal shrink-
age, the amorphous phase of metakaolin-based alkali activated materials becomes increas-
ingly resistant to crystallization as the exposure temperature rises [78]. Thus, increasing the
exposed temperature caused densification to decrease, as seen in Figure 6. According to
Liu et al. [79], quartz crystals are difficult to decompose, and only translate into polymor-
phism due to their high lattice energy. The alkali activated metakaolin was then annealed
and transformed into nepheline ((Na,K)AlSiO4) (ICDD reference: 01-076-2469), which was
subsequently used in other applications. New crystallization peaks appeared at 18.588◦,
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20.509◦, 23.118◦, 29.666◦, 38.343◦, 43.178◦, 59.100◦, and 67.540◦. This research supports the
findings of Zawrah et al. [80] and Lahoti et al. [81], who found that raising the sintering
temperature increase the quantity of nepheline that is formed.

3.3.5. Nitrogen Adsorption–Desorption Isotherms Analysis

Figure 9 presents the nitrogen adsorption–desorption isotherms and pore size distribu-
tion for metakaolin-based alkali activated materials cured at 60 ◦C and subjected to a higher
temperature of 900 ◦C. Both samples displayed adsorption–desorption isotherms of type
IV with limited multilayer development and typed H2 hysteresis loops for validating the
porosity of the regular channel structure. These considerations highlighted the increasing
boundary curve in the isotherm plot, according to the corresponding area that was con-
nected with the porous silica associated with opening pores and with homogenous ordered
frameworks [16,82–84]. The metakaolin-based alkali activated materials had higher specific
area, SBET, and total pore volume, VT, values than the raw material, as shown in Table 2. Ac-
cording to the BET technique, the SBET values for raw materials and samples of metakaolin
that were cured at 60 ◦C and exposed at 900 ◦C were 4.575, 24.608, and 9.669 m2/g, respec-
tively, with the VT values of 0.0124, 0.1716, and 0.0283 cm3/g, respectively.

Figure 9. Nitrogen adsorption–desorption isotherms and pore size distribution curve of the
metakaolin based alkali activated materials exposed at 60 ◦C and 900 ◦C.

Table 2. Specific surfaces area and total pore volume of metakaolin based alkali activated materials.

Sample Specific Surface Area, SBET (m2/g) Total Pore Volume, VT (cm3/g)

MK 4.475 0.012366
60 ◦C 24.608 0.171588
900 ◦C 9.669 0.028246

Additionally, samples exposed at 900 ◦C had maximum pore sizes between 20 and
40 nm, whereas samples cured at 60 ◦C had maximum pore sizes between 40 and 50 nm. It
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is obvious from SEM morphological analysis in Figure 7c that the pores began to shrink,
resulting in smaller pores. This finding indicates that 60 ◦C curing of metakaolin-based
alkali activated materials results in more uniform pore size distribution with greater micro
and mesoporosity. The findings also showed that the metakaolin-based AAMs had greater
active areas, pore volumes, and pore sizes when exposed at lower temperatures. This
great pore structure of micro/mesopore design is expected to provide higher copper
adsorption capacity and copper removal efficiency to adsorbents due to larger surface area
and improved interaction between the diffusing molecules and the surface.

3.3.6. Elemental Distribution from Micro-XRF Analysis

The distribution of Si, Al, and Ca, with optical images, in metakaolin-based alkali
activated materials that were cured at 60 ◦C for 24 h is presented in the micro-XRF elemental
maps of Figure 10. Due to the maximum water absorption with regular pore distribution
from the microstructure image, 0.5 Na2SiO3/NaOH cured at 60 ◦C to metakaolin based
alkali activated materials as an adsorbent was chosen for micro-XRF study. High concen-
tration is shown by a reddish colour tone on the colour bar, whereas a blueish colour tone
represents low concentration. A high concentration of Si shows homogenous distribution
due to the phases (quartz, kaolinite and muscovite) present, which consists of the Si ele-
ment. A high concentration of Al indicates the phases of kaolinite and muscovite in these
samples. In line with chemical composition (Table 1) and phase analysis results presented in
Figure 8, it was indicated that the distribution of Ca was limited on metakaolin-based alkali
activated materials by examining at the elemental distribution from micro-XRF analysis,
which displayed mostly blueish colour tone and a little amount of greenish colour.

Figure 10. Optical image and micro-XRF elemental distribution maps of Si, Al, and Ca of metakaolin-
based alkali activated materials at 60 ◦C.
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3.4. Adsorption of Copper Ions Analysis

Figure 11 depicts the uptake of Cu (II) metal ions, qe, and copper removal efficiency,
R (%), attained by metakaolin-based alkali activated subjected to elevated temperature.
The maximum copper ion uptake was found in metakaolin based alkali activated materials,
which were only cured at 60 ◦C, and had a 63.73 mg/g adsorption capacity and 95.59%
copper ion removal efficiency at optimal conditions of pH = 5, the dosage of 0.15 g, the
temperature of 25 ◦C, and contact time of 60 min. This finding was comparable to that
reported by Tan et al., who found that the Qe of Cu (II) by porous metakaolin geopolymer
adsorbents was around 35.5 mg/g under the same adsorption condition, yet required
50 h of contact time to achieve the greatest copper ion absorption [35]. It is evident from
the graph that, following an hour of adsorption, the sorption of copper ions and copper
removal efficiency initially increased from the sample at room temperature to curing at
60 ◦C, going from 45.864 mg/g to 63.726 mg/g of qe and from 68.7% to 95.59% of copper
removal efficiency. However, when exposed to the highest temperature, 900 ◦C, the qe
and R (%) dropped to the lowest points, at 24.164 mg/g and 36.25%, respectively. The
highest copper removal efficiency at samples cured for 60 ◦C means that the metakaolin-
based alkali activated material surface structure modification at this temperature had more
Cu2+ ion sorption sites and physical characteristics than the samples subjected to higher
temperatures. This investigation agreed with the findings of previous researchers who
found that the volume of large pores and medium pores reduced in materials subjected
to high temperature due to shrinking of the lattice structures and complicated thermal
expansion behaviour that changes with time and pore system moisture [85–87]. The
adsorbents physical characteristics, such as pore size, pore volume, and specific surface
area, as illustrated in Figures 7b and 9, are additional crucial elements that significantly
affect the absorption process.

Figure 11. Adsorption capacity and removal efficiency of copper ions by metakaolin based alkali
activated materials adsorbent at different elevated temperatures at adsorption conditions of pH = 5, a
dosage of 0.15 g, the temperature of 25 ◦C, and contact time of 60 min.

4. Conclusions

The utilization of metakaolin as the main source for alkali activated materials as
an adsorbent, with a variety of mixing design preparations, significantly influences the
properties of the fresh and hardened states of alkali activated materials and their poros-
ity structure. This study’s conclusion can be drawn based on the study objectives. The
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ratio 0.5 Na2SiO3/NaOH is the optimum ratio, which resulted in the highest water absorp-
tion, lowest density, and acceptable compressive strength to be an adsorbent. A higher
sodium silicate to sodium hydroxide ratio is not recommended due to the higher viscosity
of a higher Na2SiO3/NaOH ratio, which turns to more extensive bubble deformation
and faster bubble break up into smaller bubbles that produce lower water absorption.
In addition, curing and exposure to high-temperature conditions also play a crucial role
in achieving the optimum properties of water absorption percentage, and also for their
microstructure performances that need to be considered as an effective adsorbent for al-
kali activated metakaolin. It was discovered that the metakaolin based alkali activated
materials cured at 60 ◦C with 63.73 mg/g adsorption capacity and 95.59% copper removal
efficiency had the greatest mechanical and physical properties, with good microstructural
performances required for an effective adsorbent. High heat temperature exposure was
not effective, which attributed to the reduction of water absorption percentage due to high
heat shrinkage, which caused the hardened structure to become more compact, lowering
its permeable porosity. The pore size distribution, the pore connectivity, the shape, and
also the volume of the pore space are very important factors that govern the water perme-
ability of alkali activated metakaolin paste. In addition, amorphous foaming porous alkali
activated metakaolin leads to the formation of a porous structure, encouraging Cu2+ ad-
sorption. Thus, the metakaolin-based alkali activated materials adsorbent was created
using a straightforward procedure and was synthesized at a temperature of 60 ◦C, which
is lower than the sintering temperature for typical conventional zeolite, adsorbents, or
membranes used for heavy metals removal, which require heat treatment up to 1600 ◦C
depending on the material type. These considerations have increased the requirement for
environmentally sustainable adsorbents at free or lower sintering temperature that remove
copper ions efficiently.
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