35 research outputs found

    Poly(triazolyl methacrylate) glycopolymers as potential targeted unimolecular nanocarriers

    Get PDF
    © The Royal Society of Chemistry 2019.Synthetic glycopolymers are increasingly investigated as multivalent ligands for a range of biological and biomedical applications. This study indicates that glycopolymers with a fine-tuned balance between hydrophilic sugar pendant units and relatively hydrophobic polymer backbones can act as single-chain targeted nanocarriers for low molecular weight hydrophobic molecules. Non-covalent complexes formed from poly(triazolyl methacrylate) glycopolymers and low molecular weight hydrophobic guest molecules were characterised through a range of analytical techniques-DLS, SLS, TDA, fluorescence spectroscopy, surface tension analysis-and molecular dynamics (MD) modelling simulations provided further information on the macromolecular characteristics of these single chain complexes. Finally, we show that these nanocarriers can be utilised to deliver a hydrophobic guest molecule, Nile red, to both soluble and surface-immobilised concanavalin A (Con A) and peanut agglutinin (PNA) model lectins with high specificity, showing the potential of non-covalent complexation with specific glycopolymers in targeted guest-molecule delivery.Peer reviewedFinal Published versio

    One-pot RAFT and fast polymersomes assembly: a ‘beeline’ from monomers to drug-loaded nanovectors

    Get PDF
    Rapid and simple routes to functional polymersomes are increasingly needed to expand their clinical or industrial applications. Here we describe a novel strategy where polymersomes are prepared through an in-line process in just a few hours, starting from simple acrylate or acrylamide monomers. Using Perrier's protocol, well-defined amphiphilic diblock copolymers formed from PEG acrylate (mPEGA480), 2-(acryloyloxy)ethyl-3-chloro-4-hydroxybenzoate (ACH) or 2-(3-chloro-4-hydroxybenzamido)ethyl acrylate (CHB), have been synthesised by RAFT polymerisation in one-pot, pushing the monomer conversion for each block close to completion (≥94%). The reaction mixture, consisting of green biocompatible solvents (ethanol/water) have then been directly utilised to generate well-defined polymersomes, by simple cannulation into water or in a more automated process, by using a bespoke microfluidic device. Terbinafine and cyanocobalamine were used to demonstrate the suitability of the process to incorporate model hydrophobic and hydrophilic drugs, respectively. Vesicles size and morphology were characterised by DLS, TEM, and AFM. In this work we show that materials and experimental conditions can be chosen to allow facile and rapid generation drug-loaded polymersomes, through a suitable in-line process, directly from acrylate or acrylamide monomer building blocks

    1H-NMR metabolomics reveals the Glabrescione B exacerbation of glycolytic metabolism beside the cell growth inhibitory effect in glioma

    Get PDF
    BACKGROUND: Glioma is the most common and primary brain tumors in adults. Despite the available multimodal therapies, glioma patients appear to have a poor prognosis. The Hedgehog (Hh) signaling is involved in tumorigenesis and emerged as a promising target for brain tumors. Glabrescione B (GlaB) has been recently identified as the first direct inhibitor of Gli1, the downstream effector of the pathway. METHODS: We established the overexpression of Gli1 in murine glioma cells (GL261) and GlaB effect on cell viability. We used 1H-nuclear magnetic resonance (NMR) metabolomic approach to obtain informative metabolic snapshots of GL261 cells acquired at different time points during GlaB treatment. The activation of AMP activated protein Kinase (AMPK) induced by GlaB was established by western blot. After the orthotopic GL261 cells injection in the right striatum of C57BL6 mice and the intranasal (IN) GlaB/mPEG5kDa-Cholane treatment, the tumor growth was evaluated. The High Performance Liquid Chromatography (HPLC) combined with Mass Spectrometry (MS) was used to quantify GlaB in brain extracts of treated mice. RESULTS: We found that GlaB affected the growth of murine glioma cells both in vitro and in vivo animal model. Using an untargeted 1H-NMR metabolomic approach, we found that GlaB stimulated the glycolytic metabolism in glioma, increasing lactate production. The high glycolytic rate could in part support the cytotoxic effects of GlaB, since the simultaneous blockade of lactate efflux with \u3b1-cyano-4-hydroxycinnamic acid (ACCA) affected glioma cell growth. According to the metabolomic data, we found that GlaB increased the phosphorylation of AMPK, a cellular energy sensor involved in the anabolic-to-catabolic transition. CONCLUSIONS: Our results indicate that GlaB inhibits glioma cell growth and exacerbates Warburg effect, increasing lactate production. In addition, the simultaneous blockade of Gli1 and lactate efflux amplifies the anti-tumor effect in vivo, providing new potential therapeutic strategy for this brain tumor

    Mesenchymal Stem Cell Membrane-Coated TPCS2a-Loaded Nanoparticles for Breast Cancer Photodynamic Therapy

    No full text
    Despite substantial improvements in breast cancer (BC) treatment there is still an urgent need to find alternative treatment options to improve the outcomes for patients with advanced-stage disease. Photodynamic therapy (PDT) is gaining a lot of attention as a BC therapeutic option because of its selectivity and low off-target effects. However, the hydrophobicity of photosensitizers (PSs) impairs their solubility and limits the circulation in the bloodstream, thus representing a major challenge. The use of polymeric nanoparticles (NPs) to encapsulate the PS may represent a valuable strategy to overcome these issues. Herein, we developed a novel biomimetic PDT nanoplatform (NPs) based on a polymeric core of poly(lactic-co-glycolic)acid (PLGA) loaded with the PS meso-tetraphenylchlorin disulfonate (TPCS2a). TPCS2a@NPs of 98.89 ± 18.56 nm with an encapsulation efficiency percentage (EE%) of 81.9 ± 7.92% were obtained and coated with mesenchymal stem cells-derived plasma membranes (mMSCs) (mMSC-TPCS2a@NPs, size of 139.31 ± 12.94 nm). The mMSC coating armed NPs with biomimetic features to impart long circulation times and tumor-homing capabilities. In vitro, biomimetic mMSC-TPCS2a@NPs showed a decrease in macrophage uptake of 54% to 70%, depending on the conditions applied, as compared to uncoated TPCS2a@NPs. Both NP formulations efficiently accumulated in MCF7 and MDA-MB-231 BC cells, while the uptake was significantly lower in normal breast epithelial MCF10A cells with respect to tumor cells. Moreover, encapsulation of TPCS2a in mMSC-TPCS2a@NPs effectively prevents its aggregation, ensuring efficient singlet oxygen (1O2) production after red light irradiation, which resulted in a considerable in vitro anticancer effect in both BC cell monolayers (IC50 < 0.15 µM) and three-dimensional spheroids

    Chitosans as new tools against biofilms formation on the surface of silicone urinary catheters

    No full text
    Urinary catheters contamination by microorganisms is a major cause of hospital acquired infections and represents a limitation for long-term use. In this work, biofilms of Klebsiella pneumoniae and Escherichia coli clinical isolates were developed on urinary catheters for 48 and 72 h in artificial urine medium (AUM) with different molecular weight chitosans (AUM-CS solutions) at pH 5.0. The number of viable bacteria was determined by standard plate count agar while crystal violet (CV) staining was carried out to assess biomass production (optical density at 570 nm) in the mentioned conditions. Re-growth of each strain was also evaluated after 24 h re-incubation of the treated catheters. Significant decreases of log CFU/catheter and biomass production were observed for all the biofilms developed in AUM-CS compared with the controls in AUM. The percentages of biofilm removal were slightly higher for E. coli biofilms (up to 90.4%) than those of K. pneumoniae (89.7%); in most cases, the complete inhibition of bacterial re-growth on treated catheter pieces was observed. Contact time influenced chitosan efficacy rather than its molecular weight or the biofilms age. The results confirmed the potentiality of chitosans as a biomacromolecule tool to contrast biofilm formation and reduce bacterial re-growth on urinary catheters

    Novel Oligo-guanidyl Derivatives As Cell Penetrating Tools For Intracellular Delivery Of Therapeutic Supramolecular Systems.

    No full text
    A non-peptide oligo-guanidyl derivative was prepared and investigated as cell penetration enhancer for bioactive macromolecules and colloidal drug delivery systems. The cell penetration properties of the multi-armed oligo-arginyl derivative was evaluated using fluorescein-labelled bovine serum albumin as large size hydrophilic cargo molecule on two different cell lines by fluorescence spectroscopy, flow cytometry and confocal microscopy

    PEG-Lipid core micelles with pH responsiveness for tumor cell targeting

    No full text
    In the latest years, investigations have been performed to develop smart stimuli responsive drug delivery systems. These systems are intended to move through the body in a dormant state but can selectively respond to physiopathological environmental changes. These systems can be exploited for ameliorating cell targeting or for controlled drug release in specific body districts [1]. Typically, solid tumours present lower pH, higher temperature, peculiar enzymatic pool and higher redox potential as compared to normal tissues. Therefore, these physiopathological stimuli can promote surface or macroscopic alterations of nanocarriers chemically constructed to sense the stimulus. This may result in exposition of the targeting moieties, improved cellular association or activation of drug release. Here we report the synthesis and characterization of a new stimulus responsive supramolecular system based on the pH sensitive amphiphilic unimer stearoyl-PEG-poly-sulfadimethoxine (stearoyl-PEG-(SDM)7). Sulfadimethoxine (SDM) was chosen for its ionic character (pKa = 6.1) which allows for pH induced hydrophobic/hydrophilic switching [2]

    Dexamethasone loaded liposomes by thin\u2010film hydration and microfluidic procedures: Formulation challenges

    No full text
    Liposomes have been one of the most exploited drug delivery systems in recent decades. However, their large\u2010scale production with low batch\u2010to\u2010batch differences is a challenge for industry, which ultimately delays the clinical translation of new products. We have investigated the effects of formulation parameters on the colloidal and biopharmaceutical properties of liposomes generated with a thin\u2010film hydration approach and microfluidic procedure. Dexamethasone hemisuccinate was remotely loaded into liposomes using a calcium acetate gradient. The liposomes produced by microfluidic techniques showed a unilamellar structure, while the liposomes produced by thin\u2010film hydration were multilamellar. Under the same remote loading conditions, a higher loading capacity and efficiency were observed for the liposomes obtained by microfluidics, with low batch\u2010to\u2010batch differences. Both formulations released the drug for almost one month with the liposomes prepared by microfluidics showing a slightly higher drug release in the first two days. This behavior was ascribed to the different structure of the two liposome formulations. In vitro studies showed that both formulations are non\u2010toxic, associate to human Adult Retinal Pigment Epithelial cell line\u201019 (ARPE\u201019) cells, and efficiently reduce inflammation, with the liposomes obtained by the microfluidic technique slightly outperforming. The results demonstrated that the microfluidic technique offers advantages to generate liposomal formulations for drug\u2010controlled release with an enhanced biopharmaceutical profile and with scalability
    corecore