27 research outputs found

    Glove-based systems for medical applications: review of recent advancements

    Get PDF
    Human hand motion analysis is attracting researchers in the areas of neuroscience, biomedical engineering, robotics, human-machines interfaces (HMI), human-computer interaction (HCI), and artificial intelligence (AI). Among the others, the fields of medical rehabilitation and physiological assessments are suggesting high impact applications for wearable sensing systems. Glove-based systems are one of the most significant devices in assessing quantities related to hand movements. This paper provides updated survey among the main glove solutions proposed in literature for hand rehabilitation. Then, the process for designing glove-based systems is defined, by including all relevant design issues for researchers and makers. The main goal of the paper is to describe the basics of glove-based systems and to outline their potentialities and limitations. At the same time, roadmap to design and prototype the next generation of these devices is defined, according to the results of previous experiences in the scientific community

    Astrophysical neutrino oscillations after pulsar timing array analyses

    Full text link
    The pattern of neutrino flavor oscillations could be altered by the influence of noisy perturbations such as those arising from a gravitational wave background (GWB). A stochastic process that is consistent with a GWB has been recently reported by the independent analyses of pulsar timing array (PTA) data sets collected over a decadal timescale by the North American Nanohertz Observatory for Gravitational Waves (NANOGrav), the European Pulsar Timing Array (EPTA), the Parkes Pulsar Timing Array (PPTA), and the Chinese Pulsar Timing Array (CPTA) collaborations. We investigate the modifications in the neutrino flavor oscillations under the influence of the GWB reported by the PTA collaborations and we discuss how such effects could be potentially revealed in near-future neutrino detectors, possibly helping the discrimination of different models for the GWB below the nHz frequency range.Comment: 5 pages, 2 figure

    Action plan for the conservation of habitats and species associated with seamounts, underwater caves and canyons, aphotic hard beds and chemo-synthetic phenomena in the Mediterranean Sea (Dark Habitats action plan)

    Get PDF
    Dark habitats are environments where the luminosity is extremely weak, or even absent (aphotic area) leading to an absence of macroscopic autochthonous photosynthesis. The bathymetric extension of this lightless area depends to a great extent on the turbidity of the water and corresponds to benthic and pelagic habitats starting from the deep circa-littoral. Caves which show environmental conditions that favour the installation on of organisms characteristic of dark habitats, are also taken into account. Dark habitats are dependent on very diverse geomorphological structures (e.g. underwater caves, canyons, slopes, isolated rocks, abyssal plains, cold seeps, brine anoxic lakes, hydrothermal springs and seamounts). Dark habitats represent outstanding and potential ecosystems with regard to their: Frailty and vulnerability to any land-based pressure Play an important part in the way the Mediterranean ecosystem functions, insofar as they constitute the main route for transferring matter between the coast and the deep sea Considered as biodiversity hotspots and recruiting areas forming a veritable reservoirs of knowledge and biodiversity Natural habitats that come under Habitat Directive on the conservation of natural habitats and of wild fauna and flora and appear as such as priority habitats requiring protection (Directive 92/43). A certain number of underwater caves enjoy protection status because they fall within the geographical boundaries of Marine Protected Areas (MPAs) Understanding of these functions is necessary for a better understanding and management of the biodiversity of Mediterranean coastal zones and continental shelf.peer-reviewe

    A population genomics insight by 2b‐RAD reveals populations' uniqueness along the Italian coastline in Leptopsammia pruvoti (Scleractinia, Dendrophylliidae)

    Get PDF
    Aim Marine bioconstructions such as coralligenous formations are hotspot of biodiversity and play a relevant ecological role in the preservation of biodiversity by providing carbon regulation, protection and nursery areas for several marine species. For this reason, the European Union Habitat Directive included them among priority habitats to be preserved. Although their ecological role is well established, connectivity patterns are still poorly investigated, representing a limit in conservation planning. The present study pioneers a novel approach for the analysis of connectivity in marine bioconstructor species, which often lack suitable genetic markers, by taking advantage of next‐generation sequencing techniques. We assess the geographical patterns of genomic variation of the sunset cup coral Leptopsammia pruvoti Lacaze‐Duthiers, 1897, an ahermatypic, non‐zooxanthellate and solitary scleractinian coral species common in coralligenous habitats and distributed across the Mediterranean Sea. Location The Italian coastline (Western and Central Mediterranean). Methods We applied the restriction site‐associated 2b‐RAD approach to genotype over 1,000 high‐quality and filtered single nucleotide polymorphisms in 10 population samples. Results The results revealed the existence of a strongly supported genetic structure, with highly significant pairwise FST values between all the population samples, including those collected about 5 km apart from each other. Moreover, genomic data indicate that the strongest barriers to gene flow are between the western (Ligurian–Tyrrhenian Sea) and the eastern side (Adriatic Sea) of the Italian peninsula. Main conclusions The strong differentiation found in L. pruvoti is similar to that found in other species of marine bioconstructors investigated in this area, but it strongly contrasts with the small differences found in many fish and invertebrates at the same geographical scale. All in one, our results highlight the importance of assessing connectivity in species belonging to coralligenous habitats as, due to their limited dispersal ability, they might require specific spatial conservation measures

    Spontaneous Lorentz symmetry breaking effects on GRBs jets arising from neutrino pair annihilation process near a black hole

    No full text
    Abstract The study of neutrino pair annihilation into electron-positron pairs ( ννˉ→e−e+\nu {\bar{\nu }}\rightarrow e^-e^+ ν ν ¯ → e - e + ) is astrophysically well-motivated because it is a possible powering mechanism for the gamma-ray bursts (GRBs). In this paper, we estimate the gamma-ray energy deposition rate (EDR) arising from the annihilation of the neutrino pairs in the equatorial plane of a slowly rotating black hole geometry modified by the broken Lorentz symmetry (induced by a background bumblebee vector field). More specifically, owing to the presence of a dimensionless Lorentz symmetry breaking (LSB) parameter l arising from nonminimal coupling between the bumblebee field with nonzero vacuum expectation value and gravity, the metric solution in question differs from the standard slowly rotating Kerr black hole. By idealizing the thin accretion disk temperature profile in the two forms of isothermal and gradient around the bumblebee gravity-based slow rotating black hole, we investigate the influence of spontaneous LSB on the ννˉ\nu {\bar{\nu }} ν ν ¯ -annihilation efficiency. For both profiles, we find that positive values of LSB parameter l>0l>0 l > 0 induce an enhancement of the EDR associated with the neutrino-antineutrino annihilation. Therefore, the process of powering the GRBs jets around bumblebee gravity modified slowly rotating geometry is more efficient in comparison with standard metric. Using the observed gamma-ray luminosity associated with different GRBs types (short, long, and ultra-long), we find, through the analysis of the EDR in the parameter space l−al-a l - a ( a2≪1a^2\ll 1 a 2 ≪ 1 ), some allowed ranges for the LSB parameter l

    Energy extraction via magnetic reconnection in Lorentz breaking Kerr–Sen and Kiselev black holes

    No full text
    Black holes can accumulate a large amount of energy, responsible for highly energetic astrophysical phenomena. Although the Blandford–Znajek is considered to date the leading mechanism for powering jets and GRBs, recently fast magnetic reconnection (MR) of the magnetic field was proposed as a new way to extract energy. In this paper, we investigate this phenomena in a bumblebee Kerr–Sen BH, which differentiates from standard Kerr solution via a Lorentz symmetry breaking parameter ℓ\ell and an electric charge one b. We find that the presence of the charge parameter strongly changes the simple Kerr case, making this extraction mechanism possible even for not extremely rotating black holes (a∼0.7a\sim 0.7). We also show that, under appropriate circumstances, MR is more efficient compared to the Blandford–Znajek mechanism. We finally compare these results with dark energy (quintessence) black-hole solutions. In this case, we find that a Kerr black hole is indistinguishable from a rotational Kiselev one, whatever the energy-matter that surrounds it (including ordinary matter, such as dust and radiation)

    Massive sterile neutrinos in the early Universe: From thermal decoupling to cosmological constraints

    No full text
    International audienceWe consider relatively heavy neutrinos νH, mostly contributing to a sterile state νs, with mass in the range 10  MeV≲ms≲mπ∼135  MeV, which are thermally produced in the early Universe in collisional processes involving active neutrinos and freezing out after the QCD phase transition. If these neutrinos decay after the active neutrino decoupling, they generate extra neutrino radiation but also contribute to entropy production. Thus, they alter the value of the effective number of neutrino species Neff as, for instance, measured by the cosmic microwave background (CMB), as well as affect primordial nucleosynthesis (BBN), notably He4 production. We provide a detailed account of the solution of the relevant Boltzmann equations. We also identify the parameter space allowed by current Planck satellite data and forecast the parameter space probed by future stage-4 ground-based CMB observations, expected to match or surpass BBN sensitivity
    corecore