60 research outputs found

    Does mimicking others change your self-view?

    Get PDF
    Does mimicking affect the way you think about yourself in relation to other people? In the present study, we instructed participants to either mimic or not mimic the expressions of their interaction partner. After a 3-minute interaction, participants' self-view in relation to others was measured. Results revealed that mimickers defined themselves more in relation to others than nonmimickers. Thus, mimicking others, compared to not mimicking others, changes your self-view

    Kinetics of recruitment and allosteric activation of ARHGEF25 isoforms by the heterotrimeric G-protein Gαq

    Get PDF
    Rho GTPases are master regulators of the eukaryotic cytoskeleton. The activation of Rho GTPases is governed by Rho guanine nucleotide exchange factors (GEFs). Three RhoGEF isoforms are produced by the gene ARHGEF25; p63RhoGEF580, GEFT and a recently discovered longer isoform of 619 amino acids (p63RhoGEF619). The subcellular distribution of p63RhoGEF580 and p63RhoGEF619 is strikingly different in unstimulated cells, p63RhoGEF580 is located at the plasma membrane and p63RhoGEF619 is confined to the cytoplasm. Interestingly, we find that both P63RhoGEF580 and p63RhoGEF619 activate RhoGTPases to a similar extent after stimulation of Gαq coupled GPCRs. Furthermore, we show that p63RhoGEF619 relocates to the plasma membrane upon activation of Gαq coupled GPCRs, resembling the well-known activation mechanism of RhoGEFs activated by Gα12/13. Synthetic recruitment of p63RhoGEF619 to the plasma membrane increases RhoGEF activity towards RhoA, but full activation requires allosteric activation via Gαq. Together, these findings reveal a dual role for Gαq in RhoGEF activation, as it both recruits and allosterically activates cytosolic ARHGEF25 isoforms

    The balance between Gα<sub>i</sub>-Cdc42/Rac and Gα<sub>12/13</sub>-RhoA pathways determines endothelial barrier regulation by sphingosine-1-phosphate

    Get PDF
    The bioactive sphingosine-1-phosphatephosphate (S1P) is present in plasma, bound to carrier proteins, and involved in many physiological processes, including angiogenesis, inflammatory responses, and vascular stabilization. S1P can bind to several G-protein-coupled receptors (GPCRs) activating a number of different signaling networks. At present, the dynamics and relative importance of signaling events activated immediately downstream of GPCR activation are unclear. To examine these, we used a set of fluorescence resonance energy transfer-based biosensors for different RhoGTPases (Rac1, RhoA/B/C, and Cdc42) as well as for heterotrimeric G-proteins in a series of live-cell imaging experiments in primary human endothelial cells. These experiments were accompanied by biochemical GTPase activity assays and transendothelial resistance measurements. We show that S1P promotes cell spreading and endothelial barrier function through S1PR1-Gαi-Rac1 and S1PR1-Gαi-Cdc42 pathways. In parallel, a S1PR2-Gα12/13-RhoA pathway is activated that can induce cell contraction and loss of barrier function, but only if Gαi-mediated signaling is suppressed. Our results suggest that Gαq activity is not involved in S1P-mediated regulation of barrier integrity. Moreover, we show that early activation of RhoA by S1P inactivates Rac1 but not Cdc42, and vice versa. Together, our data show that the rapid S1P-induced increase in endothelial integrity is mediated by a S1PR1-Gαi-Cdc42 pathwa

    Delegation of Obligations and Responsibility

    Get PDF
    Part 6: Policy Compliance and ObligationsInternational audienceIn this paper, we discuss the issue of responsibilities related to the fulfillment and the violation of obligations. We propose to formally define the different aspects of responsibility, namely causal responsibility, functional responsibility, liability as well as sanctions, and to examine how delegation influences these concepts. Our main aim is to identify the responsibility of each agent that is involved in the delegation of obligations. More precisely, we try to answer to the following questions: who is responsible for the obligation fulfillment? When a violation occurs, which agents are causally responsible for this violation? Who is liable for this violation and to whom? And finally, who must be sanctioned

    Spotlight on the Roles of Whitefly Effectors in Insect–Plant Interactions

    Get PDF
    The Bemisia tabaci species complex (whitefly) causes enormous agricultural losses. These phloem-feeding insects induce feeding damage and transmit a wide range of dangerous plant viruses. Whiteflies colonize a broad range of plant species that appear to be poorly defended against these insects. Substantial research has begun to unravel how phloem feeders modulate plant processes, such as defense pathways, and the central roles of effector proteins, which are deposited into the plant along with the saliva during feeding. Here, we review the current literature on whitefly effectors in light of what is known about the effectors of phloem-feeding insects in general. Further analysis of these effectors may improve our understanding of how these insects establish compatible interactions with plants, whereas the subsequent identification of plant defense processes could lead to improved crop resistance to insects. We focus on the core concepts that define the effectors of phloem-feeding insects, such as the criteria used to identify candidate effectors in sequence-mining pipelines and screens used to analyze the potential roles of these effectors and their targets in planta. We discuss aspects of whitefly effector research that require further exploration, including where effectors localize when injected into plant tissues, whether the effectors target plant processes beyond defense pathways, and the properties of effectors in other insect excretions such as honeydew. Finally, we provide an overview of open issues and how they might be addressed

    Developing, optimizing and using FRET-based biosensors to elucidate G protein signaling

    Get PDF
    The aim of the research presented in this thesis was to gain a better understanding of how intracellular signaling by GPCRs is regulated. We used fluorescence microscopy to study GPCR signaling in live cells. In order to study protein-protein interactions involved in GPCR signaling, a high spatiotemporal resolution is required. This because these interactions are often short-lived and occur at <10nm proximities. To enable visualization of protein-protein interactions at resolutions beyond the limits of conventional microscopy, the technique Förster Resonance Energy Transfer (FRET) is exploited, applied in fluorescent biosensors. FRET is energy transfer between two fluorophores. FRET occurs if the fluorophores exist in close proximity (<10nm). The fluorescent biosensors consist of two fluorescent proteins (FPs), called the FRET pair, and a sensing domain. The sensing domain should be specific for a certain biological event involved in GPCR signaling. Upon occurrence of the biological event, the sensing domain interacts, dissociates or changes conformation leading to a change in distance or orientation between the FRET pair, altering the efficiency of energy transfer. Thereby the FRET pair indirectly reports the occurrence of the specific biological event. It is of high importance that these biosensors report biological events truthfully. Therefore a substantial part of my research was directed towards the development and optimization of biosensors and the employed fluorescent proteins that constitute the FRET pair. Another part of my research was directed towards application of developed and optimized biosensors to gain more insight into the regulation of GPCR signaling
    corecore