854 research outputs found

    INTEGRAL observations of TeV plerions

    Full text link
    Amongst the sources seen in very high gamma-rays several are associated with Pulsar Wind Nebulae (``TeV plerions''). The study of hard X-ray/soft gamma-ray emission is providing an important insight into the energetic particle population present in these objects. The unpulsed emission from pulsar/pulsar wind nebula systems in the energy range accessible to the INTEGRAL satellite is mainly synchrotron emission from energetic and fast cooling electrons close to their acceleration site. Our analyses of public INTEGRAL data of known TeV plerions detected by ground based Cherenkov telescopes indicate a deeper link between these TeV plerions and INTEGRAL detected pulsar wind nebulae. The newly discovered TeV plerion in the northern wing of the Kookaburra region (G313.3+0.6 powered by the middle aged PSR J1420-6048) is found to have a previously unknown INTEGRAL counterpart which is besides the Vela pulsar the only middle aged pulsar detected with INTEGRAL. We do not find an INTEGRAL counterpart of the TeV plerion associated with the X-ray PWN ``Rabbit'' G313.3+0.1 which is possibly powered by a young pulsar.Comment: 4 pages, 6 figures, proceedings of conference "The Multi-Messenger Approach to High-Energy Gamma-ray Sources" Barcelona/Spain (2006

    Search for TeV Gamma-Rays from Shell-Type Supernova Remnants

    Get PDF
    If cosmic rays with energies <100 TeV originate in the galaxy and are accelerated in shock waves in shell-type supernova remnants (SNRs), gamma-rays will be produced as the result of proton and electron interactions with the local interstellar medium, and by inverse Compton emission from electrons scattering soft photon fields. We report on observations of two supernova remnants with the Whipple Observatory's 10 m gamma-ray telescope. No significant detections have been made and upper limits on the >500 GeV flux are reported. Non-thermal X-ray emission detected from one of these remnants (Cassiopeia A) has been interpreted as synchrotron emission from electrons in the ambient magnetic fields. Gamma-ray emission detected from the Monoceros/Rosette Nebula region has been interpreted as evidence of cosmic-ray acceleration. We interpret our results in the context of these observations.Comment: 4 pages, 2 figures, to appear in the proceedings of 26th International Cosmic Ray Conference (Salt Lake City, 1999

    Tev Observations of the Variability and Spectrum of Markarian 421

    Get PDF
    Markarian 421 was the first extragalactic source to be detected with high statistical certainty at TeV energies. The Whipple Observatory gamma-ray telescope has been used to observe the Active Galactic Nucleus, Markarian 421 in 1996 and 1997. The rapid variability observed in TeV gamma rays in previous years is confirmed. Doubling times as short as 15 minutes are reported with flux levels reaching 15 photons per minute. The TeV energy spectrum is derived using two independent methods. The implications for the intergalactic infra-red medium of an observed unbroken power law spectrum up to energies of 5 TeV is discussed.Comment: 4 pages, 4 figures, to appear in proceedings of 25 ICRC (Durban

    TeV Observations of the Variability and Spectrum of Markarian 501

    Get PDF
    Markarian 501 is only the second extragalactic source to be detected with high statistical certainty at TeV energies; it is similar in many ways to Markarian 421. The Whipple Observatory gamma-ray telescope has been used to observe the AGN Markarian 501 in 1996 and 1997, the years subsequent to its initial detection. The apparent variability on the one-day time-scale observed in TeV gamma rays in 1995 is confirmed and compared with the variability in Markarian 421. Observations at X-ray and optical wavelengths from 1997 are also presented.Comment: 4 pages, 2 figures, to appear in proceedings of 25th ICRC (Durban

    The Flux Variability of Markarian 501 in Very High Energy Gamma Rays

    Get PDF
    The BL Lacertae object Markarian 501 was identified as a source of gamma-ray emission at the Whipple Observatory in March 1995. Here we present a flux variability analysis on several times-scales of the 233 hour data set accumulated over 213 nights (from March 1995 to July 1998) with the Whipple Observatory 10 m atmospheric Cherenkov imaging telescope. In 1995, with the exception of a single night, the flux from Markarian 501 was constant on daily and monthly time-scales and had an average flux of only 10% that of the Crab Nebula, making it the weakest VHE source detected to date. In 1996, the average flux was approximately twice the 1995 flux and showed significant month-to-month variability. No significant day-scale variations were detected. The average gamma-ray flux above ~350 GeV in the 1997 observing season rose to 1.4 times that of the Crab Nebula -- 14 times the 1995 discovery level -- allowing a search for variability on time-scales shorter than one day. Significant hour-scale variability was present in the 1997 data, with the shortest, observed on MJD 50607, having a doubling time of ~2 hours. In 1998 the average emission level decreased considerably from that of 1997 (to ~20% of the Crab Nebula flux) but two significant flaring events were observed. Thus, the emission from Markarian 501 shows large amplitude and rapid flux variability at very high energies as does Markarian 421. It also shows large mean flux level variations on year-to-year time-scales, behaviour which has not been seen from Markarian 421 so far.Comment: 19 pages, 3 figures, to appear in ApJ, June 20, 1999, Vol. 518 #

    Charge-Symmetry Violation in Pion Scattering from Three-Body Nuclei

    Get PDF
    We discuss the experimental and theoretical status of charge-symmetry violation (CSV) in the elastic scattering of pi+ and pi- on 3H and 3He. Analysis of the experimental data for the ratios r1, r2, and R at Tpi = 142, 180, 220, and 256 MeV provides evidence for the presence of CSV. We describe pion scattering from the three-nucleon system in terms of single- and double-scattering amplitudes. External and internal Coulomb interactions as well as the Delta-mass splitting are taken into account as sources of CSV. Reasonable agreement between our theoretical calculations and the experimental data is obtained for Tpi = 180, 220, and 256 MeV. For these energies, it is found that the Delta-mass splitting and the internal Coulomb interaction are the most important contributions for CSV in the three-nucleon system. The CSV effects are rather sensitive to the choice of pion-nuclear scattering mechanisms, but at the same time, our theoretical predictions are much less sensitive to the choice of the nuclear wave function. It is found, however, that data for r2 and R at Tpi = 142 MeV do not agree with the predictions of our model, which may indicate that there are additional mechanisms for CSV which are important only at lower energies.Comment: 26 pages of RevTeX, 16 postscript figure

    First detection of a VHE gamma-ray spectral maximum from a Cosmic source: H.E.S.S. discovery of the Vela X nebula

    Get PDF
    The Vela supernova remnant (SNR) is a complex region containing a number of sources of non-thermal radiation. The inner section of this SNR, within 2 degrees of the pulsar PSR B0833-45, has been observed by the H.E.S.S. gamma-ray atmospheric Cherenkov detector in 2004 and 2005. A strong signal is seen from an extended region to the south of the pulsar, within an integration region of radius 0.8 deg. around the position (RA = 08h 35m 00s, dec = -45 deg. 36' J2000.0). The excess coincides with a region of hard X-ray emission seen by the ROSAT and ASCA satellites. The observed energy spectrum of the source between 550 GeV and 65 TeV is well fit by a power law function with photon index = 1.45 +/- 0.09(stat) +/- 0.2(sys) and an exponential cutoff at an energy of 13.8 +/- 2.3(stat) +/- 4.1(sys) TeV. The integral flux above 1 TeV is (1.28 +/- 0.17 (stat) +/- 0.38(sys)) x 10^{-11} cm^{-2} s^{-1}. This result is the first clear measurement of a peak in the spectral energy distribution from a VHE gamma-ray source, likely related to inverse Compton emission. A fit of an Inverse Compton model to the H.E.S.S. spectral energy distribution gives a total energy in non-thermal electrons of ~2 x 10^{45} erg between 5 TeV and 100 TeV, assuming a distance of 290 parsec to the pulsar. The best fit electron power law index is 2.0, with a spectral break at 67 TeV.Comment: 5 pages, 4 figures, accepted for publication in Astronomy and Astrophysics letter
    corecore