112 research outputs found

    PACER : a novel 3D plant cell wall model for the analysis of non-catalytic and enzymatic responses

    Get PDF
    Background Substrate accessibility remains a key limitation to the efficient enzymatic deconstruction of lignocellulosic biomass. Limited substrate accessibility is often addressed by increasing enzyme loading, which increases process and product costs. Alternatively, considerable efforts are underway world-wide to identify amorphogenesis-inducing proteins and protein domains that increase the accessibility of carbohydrate-active enzymes to targeted lignocellulose components. Results We established a three-dimensional assay, PACER (plant cell wall model for the analysis of non-catalytic and enzymatic responses), that enables analysis of enzyme migration through defined lignocellulose composites. A cellulose/azo-xylan composite was made to demonstrate the PACER concept and then used to test the migration and activity of multiple xylanolytic enzymes. In addition to non-catalytic domains of xylanases, the potential of loosenin-like proteins to boost xylanase migration through cellulose/azo-xylan composites was observed. Conclusions The PACER assay is inexpensive and parallelizable, suitable for screening proteins for ability to increase enzyme accessibility to lignocellulose substrates. Using the PACER assay, we visualized the impact of xylan-binding modules and loosenin-like proteins on xylanase mobility and access to targeted substrates. Given the flexibility to use different composite materials, the PACER assay presents a versatile platform to study impacts of lignocellulose components on enzyme access to targeted substrates.Peer reviewe

    A novel acetyl xylan esterase enabling complete deacetylation of substituted xylans

    Get PDF
    Background: Acetylated 4-O-(methyl) glucuronoxylan (GX) is the main hemicellulose in deciduous hardwood, and comprises a beta-(1 -> 4)-linked xylopyranosyl (Xylp) backbone substituted by both acetyl groups and alpha-(1 -> 2)-linked 4-O-methylglucopyranosyluronic acid (MeGlcpA). Whereas enzymes that target singly acetylated Xylp or doubly 2,3-O-acetyl-Xylp have been well characterized, those targeting (2-O-MeGlcpA) 3-O-acetyl-Xylp structures in glucuronoxylan have remained elusive. Results: An unclassified carbohydrate esterase (FjoAcXE) was identified as a protein of unknown function from a polysaccharide utilization locus (PUL) otherwise comprising carbohydrate-active enzyme families known to target xylan. FjoAcXE was shown to efficiently release acetyl groups from internal (2-O-MeGlcpA) 3-O-acetyl-Xylp structures, an activity that has been sought after but lacking in known carbohydrate esterases. FjoAcXE action boosted the activity of alpha-glucuronidases from families GH67 and GH115 by five and nine times, respectively. Moreover, FjoAcXE activity was not only restricted to GX, but also deacetylated (3-O-Araf)2-O-acetyl-Xylp of feruloylated xylooligomers, confirming the broad substrate range of this new carbohydrate esterase. Conclusion: This study reports the discovery and characterization of the novel carbohydrate esterase, FjoAcXE. In addition to cleaving singly acetylated Xylp, and doubly 2,3-O-acetyl-Xylp, FjoAcXE efficiently cleaves internal 3-O-acetyl-Xylp linkages in (2-O-MeGlcpA)3-O-acetyl-Xylp residues along with densely substituted and branched xylooligomers; activities that until now were missing from the arsenal of enzymes required for xylan conversion.Peer reviewe

    Structural characterization of the family GH115 alpha-glucuronidase from Amphibacillus xylanus yields insight into its coordinated action with alpha-arabinofuranosidases

    Get PDF
    The coordinated action of carbohydrate-active enzymes has mainly been evaluated for the purpose of complete saccharification of plant biomass (lignocellulose) to sugars. By contrast, the coordinated action of accessory hemicellulases on xylan debranching and recovery is less well characterized. Here, the activity of two family GH115 alpha-glucuronidases (SdeAgu115A from Saccharophagus degradans, and AxyAgu115A from Amphibacillus xylanus) on spruce arabinoglucuronoxylan (AGX) was evaluated in combination with an alpha-arabinofuranosidase from families GH51 (AniAbf51A, aka E-AFASE from Aspergillus niger) and GH62 (SthAbf62A from Streptomyces thermoviolaceus). The alpha-arabinofuranosidases boosted (methyl)-glucuronic acid release by SdeAgu115A by approximately 50 % and 30 %, respectively. The impact of the alpha-arabinofuranosidases on AxyAgu115A activity was comparatively low, motivating its structural characterization. The crystal structure of AxyAgu115A revealed increased length and flexibility of the active site loop compared to SdeAgu115A. This structural difference could explain the ability of AxyAgu115A to accommodate more highly substituted arabinoglucuronoxylan, and inform enzyme selections for improved AGX recovery and use.Peer reviewe

    Networked T Cell Death following Macrophage Infection by Mycobacterium tuberculosis

    Get PDF
    <div><h3>Background</h3><p>Depletion of T cells following infection by <em>Mycobacterium tuberculosis</em> (Mtb) impairs disease resolution, and interferes with clinical test performance that relies on cell-mediated immunity. A number of mechanisms contribute to this T cell suppression, such as activation-induced death and trafficking of T cells out of the peripheral circulation and into the diseased lungs. The extent to which Mtb infection of human macrophages affects T cell viability however, is not well characterised.</p> <h3>Methodology/Principal Findings</h3><p>We found that lymphopenia (<1.5×10<sup>9</sup> cells/l) was prevalent among culture-positive tuberculosis patients, and lymphocyte counts significantly improved post-therapy. We previously reported that Mtb-infected human macrophages resulted in death of infected and uninfected bystander macrophages. In the current study, we sought to examine the influence of infected human alveolar macrophages on T cells. We infected primary human alveolar macrophages (the primary host cell for Mtb) or PMA-differentiated THP-1 cells with Mtb H37Ra, then prepared cell-free supernatants. The supernatants of Mtb-infected macrophages caused dose-dependent, caspase-dependent, T cell apoptosis. This toxic effect of infected macrophage secreted factors did not require TNF-α or Fas. The supernatant cytotoxic signal(s) were heat-labile and greater than 50 kDa in molecular size. Although ESAT-6 was toxic to T cells, other Mtb-secreted factors tested did not influence T cell viability; nor did macrophage-free Mtb bacilli or broth from Mtb cultures. Furthermore, supernatants from <em>Mycobacterium bovis</em> Bacille de Calmette et Guerin (BCG)- infected macrophages also elicited T cell death suggesting that ESAT-6 itself, although cytotoxic, was not the principal mediator of T cell death in our system.</p> <h3>Conclusions</h3><p>Mtb-Infected macrophages secrete heat-labile factors that are toxic to T cells, and may contribute to the immunosuppression seen in tuberculosis as well as interfere with microbial eradication in the granuloma.</p> </div

    Comparative genomics of the white-rot fungi, Phanerochaete carnosa and P. chrysosporium, to elucidate the genetic basis of the distinct wood types they colonize

    Get PDF
    BackgroundSoftwood is the predominant form of land plant biomass in the Northern hemisphere, and is among the most recalcitrant biomass resources to bioprocess technologies. The white rot fungus, Phanerochaete carnosa, has been isolated almost exclusively from softwoods, while most other known white-rot species, including Phanerochaete chrysosporium, were mainly isolated from hardwoods. Accordingly, it is anticipated that P. carnosa encodes a distinct set of enzymes and proteins that promote softwood decomposition. To elucidate the genetic basis of softwood bioconversion by a white-rot fungus, the present study reports the P. carnosa genome sequence and its comparative analysis with the previously reported P. chrysosporium genome.ResultsP. carnosa encodes a complete set of lignocellulose-active enzymes. Comparative genomic analysis revealed that P. carnosa is enriched with genes encoding manganese peroxidase, and that the most divergent glycoside hydrolase families were predicted to encode hemicellulases and glycoprotein degrading enzymes. Most remarkably, P. carnosa possesses one of the largest P450 contingents (266 P450s) among the sequenced and annotated wood-rotting basidiomycetes, nearly double that of P. chrysosporium. Along with metabolic pathway modeling, comparative growth studies on model compounds and chemical analyses of decomposed wood components showed greater tolerance of P. carnosa to various substrates including coniferous heartwood.ConclusionsThe P. carnosa genome is enriched with genes that encode P450 monooxygenases that can participate in extractives degradation, and manganese peroxidases involved in lignin degradation. The significant expansion of P450s in P. carnosa, along with differences in carbohydrate- and lignin-degrading enzymes, could be correlated to the utilization of heartwood and sapwood preparations from both coniferous and hardwood species

    Polychlorinated biphenyl (PCB) metabolism in psychrotolerant and mesophilic bacteria : from substrate uptake to catalysis

    No full text
    Bioremediation of soil contaminated with polychlorinated biphenyls (PCBs) is potentially a cost-effective cleanup strategy as it can be performed on-site. My general 5 aims were to isolate PCB-degrading bacteria from PCB-contaminated Arctic soil and to determine if these bacteria are adapted for PCB degradation at low temperature. An Arctic soil bacterium and a mesophilic bacterium were compared on the basis of PCB degradation by whole cells, activities of purified biphenyl dioxygenases, regulation of genes encoding these enzymes and the mechanism of biphenyl uptake by these bacteria. 10 In addition to these studies, I demonstrated bioremediation of weathered PCBcontaminated Arctic soil in a microcosm. PCB-degrading bacteria were isolated at 7°C from PCB-contaminated Arctic soil. 16S rDNA sequences indicate that these isolates are members of the genus Pseudomonas. At 7°C, PCB congeners that were transformed by the Arctic bacteria and by the 15 mesophilic PCB-degrader, Burkholderia sp. strain LB400, were transformed at higher initial rates by the Arctic soil isolates. Furthermore, in contrast to PCB transformation by LB400, PCB transformation by the Arctic bacteria was diminished at high temperature (50°C). These observations suggest that the Arctic soil bacteria are adapted to degrade PCBs at low temperature. The effect of temperature on the kinetics of biphenyl 20 dioxygenase and the regulation of bph genes from LB400 and the Arctic soil bacterium Pseudomonas sp. strain Cam-1 were determined. The biphenyl dioxygenase from Cam-1 (BPDO[sub Cam1]) and LB400 (BPDO[sub LB400]) were overproduced in E.coli and purified anaerobically. Consistent with observations using whole cells, BPDO[sub Cam1] displayed high catalytic activity with biphenyl ([sup app][sub cat]) at low temperature and low thermal stability compared to BPDOLB4OO- However, the respective catalytic efficiencies (k[sup app][sub cat]/k[sup app][sub in]) of BPDO[sub Cam1] and BPDO[sub LB400] were not significantly different at 15°C and 25°C. The constitutive expression of bphA in LB400 was diminished at low temperature. In contrast, the expression of bphA in Cam-1 was 5 inducible, and was expressed at 7°C and 30°C. Thus, lower expression of BPDO in LB400 than in Cam-1 might contribute to the difference in PCB transformation activities by whole cells at 7°C. The induction of bphA in Cam-1 was highest with biphenyl although naphthalene, salicylate, 2-chlorobiphenyl and 4-chlorobiphenyl induced bphA in Cam-1 to levels above background. 10 To begin to elucidate how PCB-uptake affects PCB metabolism, biphenyl-uptake by Cam-1 and LB400 was investigated. In both microorganisms, biphenyl was actively transported and uptake did not depend on biphenyl catalysis. Moreover, biphenyl-uptake showed saturable kinetics with respect to biphenyl concentration. These data suggest that biphenyl-uptake occurs via an active biphenyl transport system. 15 To date, the enzymology of PCB degradation has been the main target for generating recombinant strains with improved ability to degrade PCBs. This thesis demonstrates that the regulation of bph genes and PCB uptake by bacteria are also important targets for improving the potential of PCB bioremediation. Thus, future investigations should include identifying potential biphenyl uptake systems and 20 characterizing regulatory proteins involved in bph gene expression. As a result, it might be possible to design biphenyl uptake systems with improved ability to transport PCBs, and regulatory proteins that respond to different inducers, thereby optimizing bph gene expression in different environments.Science, Faculty ofMicrobiology and Immunology, Department ofGraduat
    corecore