5 research outputs found

    Tau pathology as determinant of changes in atrophy and cerebral blood flow: a multi-modal longitudinal imaging study

    Get PDF
    PURPOSE: Tau pathology is associated with concurrent atrophy and decreased cerebral blood flow (CBF) in Alzheimer's disease (AD), but less is known about their temporal relationships. Our aim was therefore to investigate the association of concurrent and longitudinal tau PET with longitudinal changes in atrophy and relative CBF. METHODS: We included 61 individuals from the Amsterdam Dementia Cohort (mean age 65.1 ± 7.5 years, 44% female, 57% amyloid-β positive [Aβ +], 26 cognitively impaired [CI]) who underwent dynamic [18F]flortaucipir PET and structural MRI at baseline and 25 ± 5 months follow-up. In addition, we included 86 individuals (68 CI) who only underwent baseline dynamic [18F]flortaucipir PET and MRI scans to increase power in our statistical models. We obtained [18F]flortaucipir PET binding potential (BPND) and R1 values reflecting tau load and relative CBF, respectively, and computed cortical thickness from the structural MRI scans using FreeSurfer. We assessed the regional associations between i) baseline and ii) annual change in tau PET BPND in Braak I, III/IV, and V/VI regions and cortical thickness or R1 in cortical gray matter regions (spanning the whole brain) over time using linear mixed models with random intercepts adjusted for age, sex, time between baseline and follow-up assessments, and baseline BPND in case of analyses with annual change as determinant. All analyses were performed in Aβ-  cognitively normal (CN) individuals and Aβ+  (CN and CI) individuals separately. RESULTS: In Aβ+ individuals, greater baseline Braak III/IV and V/VI tau PET binding was associated with faster cortical thinning in primarily frontotemporal regions. Annual changes in tau PET were not associated with cortical thinning over time in either Aβ+ or Aβ-  individuals. Baseline tau PET was not associated with longitudinal changes in relative CBF, but increases in Braak III/IV tau PET over time were associated with increases in parietal relative CBF over time in Aβ + individuals. CONCLUSION: We showed that higher tau load was related to accelerated cortical thinning, but not to decreases in relative CBF. Moreover, tau PET load at baseline was a stronger predictor of cortical thinning than change of tau PET signal

    Spatial-Temporal Patterns of Amyloid-β Accumulation: A Subtype and Stage Inference Model Analysis

    Get PDF
    BACKGROUND AND OBJECTIVES: Currently, amyloid-β (Aβ) staging models assume a single spatial-temporal progression of amyloid accumulation. We assessed evidence for Aβ accumulation subtypes by applying the data-driven Subtype and Stage Inference (SuStaIn) model to amyloid-PET data. METHODS: Amyloid-PET data of 3010 subjects were pooled from 6 cohorts (ALFA+, EMIF-AD, ABIDE, OASIS, and ADNI). Standardized uptake value ratios (SUVr) were calculated for 17 regions. We applied the SuStaIn algorithm to identify consistent subtypes in the pooled dataset based on the cross-validation information criterion (CVIC) and the most probable subtype/stage classification per scan. The effect of demographics and risk factors on subtype assignment was assessed using multinomial logistic regression. RESULTS: Participants were mostly cognitively unimpaired (N=1890, 62.8%), had a mean age of 68.72 (SD=9.1), 42.1% was APOE-ε4 carrier, and 51.8% was female. While a one-subtype model recovered the traditional amyloid accumulation trajectory, SuStaIn identified an optimal of three subtypes, referred to as Frontal, Parietal, and Occipital based on the first regions to show abnormality. Of the 788 (26.2%) with strong subtype assignment (>50% probability), the majority was assigned to Frontal (N=415, 52.5%), followed by Parietal (N=199, 25.3%), and Occipital subtypes (N=175, 22.2%). Significant differences across subtypes included distinct proportions of APOE-ε4 carriers (Frontal:61.8%, Parietal:57.1%, Occipital:49.4%), subjects with dementia (Frontal:19.7%, Parietal:19.1%, Occipital:31.0%) and lower age for the Parietal subtype (Frontal/Occipital:72.1y, Parietal:69.3y). Higher amyloid (Centiloid) and CSF p-tau burden was observed for the Frontal subtype, while Parietal and Occipital did not differ. At follow-up, most subjects (81.1%) maintained baseline subtype assignment and 25.6% progressed to a later stage. DISCUSSION: While a one-trajectory model recovers the established pattern of amyloid accumulation, SuStaIn determined that three subtypes were optimal, showing distinct associations to AD risk factors. Nonetheless, further analyses to determine clinical utility is warranted

    Spatial-Temporal Patterns of Amyloid-β Accumulation: A Subtype and Stage Inference Model Analysis

    Get PDF
    BACKGROUND AND OBJECTIVES: Currently, amyloid-β (Aβ) staging models assume a single spatial-temporal progression of amyloid accumulation. We assessed evidence for Aβ accumulation subtypes by applying the data-driven Subtype and Stage Inference (SuStaIn) model to amyloid-PET data. METHODS: Amyloid-PET data of 3010 subjects were pooled from 6 cohorts (ALFA+, EMIF-AD, ABIDE, OASIS, and ADNI). Standardized uptake value ratios (SUVr) were calculated for 17 regions. We applied the SuStaIn algorithm to identify consistent subtypes in the pooled dataset based on the cross-validation information criterion (CVIC) and the most probable subtype/stage classification per scan. The effect of demographics and risk factors on subtype assignment was assessed using multinomial logistic regression. RESULTS: Participants were mostly cognitively unimpaired (N=1890, 62.8%), had a mean age of 68.72 (SD=9.1), 42.1% was APOE-ε4 carrier, and 51.8% was female. While a one-subtype model recovered the traditional amyloid accumulation trajectory, SuStaIn identified an optimal of three subtypes, referred to as Frontal, Parietal, and Occipital based on the first regions to show abnormality. Of the 788 (26.2%) with strong subtype assignment (>50% probability), the majority was assigned to Frontal (N=415, 52.5%), followed by Parietal (N=199, 25.3%), and Occipital subtypes (N=175, 22.2%). Significant differences across subtypes included distinct proportions of APOE-ε4 carriers (Frontal:61.8%, Parietal:57.1%, Occipital:49.4%), subjects with dementia (Frontal:19.7%, Parietal:19.1%, Occipital:31.0%) and lower age for the Parietal subtype (Frontal/Occipital:72.1y, Parietal:69.3y). Higher amyloid (Centiloid) and CSF p-tau burden was observed for the Frontal subtype, while Parietal and Occipital did not differ. At follow-up, most subjects (81.1%) maintained baseline subtype assignment and 25.6% progressed to a later stage. DISCUSSION: While a one-trajectory model recovers the established pattern of amyloid accumulation, SuStaIn determined that three subtypes were optimal, showing distinct associations to AD risk factors. Nonetheless, further analyses to determine clinical utility is warranted

    Treating Insomnia with High Risk of Depression Using Therapist-Guided Digital Cognitive, Behavioral, and Circadian Rhythm Support Interventions to Prevent Worsening of Depressive Symptoms:A Randomized Controlled Trial

    No full text
    Introduction: The global disease burden of major depressive disorder urgently requires prevention in high-risk individuals, such as recently discovered insomnia subtypes. Previous studies targeting insomnia with fully automated eHealth interventions to prevent depression are inconclusive: Dropout was high and likely biased, and depressive symptoms in untreated participants on average improved rather than worsened. Objective: This randomized controlled trial aimed to efficiently prevent the worsening of depressive symptoms by selecting insomnia subtypes at high risk of depression for internet-based circadian rhythm support (CRS), cognitive behavioral therapy for insomnia (CBT-I), or their combination (CBT-I+CRS), with online therapist guidance to promote adherence. Methods: Participants with an insomnia disorder subtype conveying an increased risk of depression (n = 132) were randomized to no treatment (NT), CRS, CBT-I, or CBT-I+CRS. The Inventory of Depressive Symptomatology-Self Report (IDS-SR) was self-administered at baseline and at four follow-ups spanning 1 year. Results: Without treatment, depressive symptoms indeed worsened (d = 0.28, p = 0.041) in high-risk insomnia, but not in a reference group with low-risk insomnia. Therapist-guided CBT-I and CBT-I+CRS reduced IDS-SR ratings across all follow-up assessments (respectively, d =-0.80, p = 0.001; d =-0.95, p < 0.001). Only CBT-I+CRS reduced the 1-year incidence of clinically meaningful worsening (p = 0.002). Dropout during therapist-guided interventions was very low (8%) compared to previous automated interventions (57-62%). Conclusions: The findings tentatively suggest that the efficiency of population-wide preventive strategies could benefit from the possibility to select insomnia subtypes at high risk of developing depression for therapist-guided digital CBT-I+CRS. This treatment may provide effective long-term prevention of worsening of depressive symptoms. Trial registration: The Netherlands Trial Register (NL7359)

    Tau pathology as determinant of changes in atrophy and cerebral blood flow: a multi-modal longitudinal imaging study

    No full text
    Purpose: Tau pathology is associated with concurrent atrophy and decreased cerebral blood flow (CBF) in Alzheimer’s disease (AD), but less is known about their temporal relationships. Our aim was therefore to investigate the association of concurrent and longitudinal tau PET with longitudinal changes in atrophy and relative CBF. Methods: We included 61 individuals from the Amsterdam Dementia Cohort (mean age 65.1 ± 7.5 years, 44% female, 57% amyloid-β positive [Aβ +], 26 cognitively impaired [CI]) who underwent dynamic [18F]flortaucipir PET and structural MRI at baseline and 25 ± 5 months follow-up. In addition, we included 86 individuals (68 CI) who only underwent baseline dynamic [18F]flortaucipir PET and MRI scans to increase power in our statistical models. We obtained [18F]flortaucipir PET binding potential (BPND) and R1 values reflecting tau load and relative CBF, respectively, and computed cortical thickness from the structural MRI scans using FreeSurfer. We assessed the regional associations between i) baseline and ii) annual change in tau PET BPND in Braak I, III/IV, and V/VI regions and cortical thickness or R1 in cortical gray matter regions (spanning the whole brain) over time using linear mixed models with random intercepts adjusted for age, sex, time between baseline and follow-up assessments, and baseline BPND in case of analyses with annual change as determinant. All analyses were performed in Aβ− cognitively normal (CN) individuals and Aβ+ (CN and CI) individuals separately. Results: In Aβ+ individuals, greater baseline Braak III/IV and V/VI tau PET binding was associated with faster cortical thinning in primarily frontotemporal regions. Annual changes in tau PET were not associated with cortical thinning over time in either Aβ+ or Aβ− individuals. Baseline tau PET was not associated with longitudinal changes in relative CBF, but increases in Braak III/IV tau PET over time were associated with increases in parietal relative CBF over time in Aβ + individuals. Conclusion: We showed that higher tau load was related to accelerated cortical thinning, but not to decreases in relative CBF. Moreover, tau PET load at baseline was a stronger predictor of cortical thinning than change of tau PET signal
    corecore