54 research outputs found

    Structure and pathogenicity of antibodies specific for citrullinated collagen type II in experimental arthritis

    Get PDF
    Antibodies to citrulline-modifi ed proteins have a high diagnostic value in rheumatoid arthritis (RA). However, their biological role in disease development is still unclear. To obtain insight into this question, a panel of mouse monoclonal antibodies was generated against a major triple helical collagen type II (CII) epitope (position 359 – 369; ARGLTGRPGDA) with or without arginines modifi ed by citrullination. These antibodies bind cartilage and synovial tissue, and mediate arthritis in mice. Detection of citrullinated CII from RA patients ’ synovial fl uid demonstrates that cartilage-derived CII is indeed citrullinated in vivo. The structure determination of a Fab fragment of one of these antibodies in complex with a citrullinated peptide showed a surprising beta -turn conformation of the peptide and provided information on citrulline recognition. Based on these findings, we propose that autoimmunity to CII, leading to the production of antibodies specific for both native and citrullinated CII, is an important pathogenic factor in the development of RA

    Autoantibodies to BRAF, a new family of autoantibodies associated with rheumatoid arthritis

    Get PDF
    International audienceBRAF (v raf murine sarcoma viral oncogene homologue B1) is a serine-threonine kinase involved in the mitogen-activated protein kinase (MAPK) signalling pathway, known to be implicated in the production of pro-inflammatory cytokines.We have observed that sera from rheumatoid arthritis (RA) patients recognize the BRAF's catalytic domain, which encompasses amino acids 416 to 766. Here, we identify peptide targets of anti-BRAF autoantibodies and test whether anti-BRAF autoantibodies may interfere with BRAF kinase activity.METHODS:Anti-BRAF autoantibodies were detected by ELISA (enzyme-linked immunosorbent assay) in the serum of RA patients and controls, using 40 overlapping 20mer peptides encompassing the catalytic domain of BRAF as immunosorbents. To test whether autoantibodies to BRAF influence BRAF kinase activity, we developed an in vitro phosphorylation assay of MEK1 (mitogen extracellular regulated kinase), a major BRAF substrate. MEK1 phosphorylation by BRAF was tested in the presence of purified anti-BRAF autoantibodies from RA patients or control antibody.RESULTS:We found that one BRAF peptide, P25 (656 to 675), is specifically recognized by autoantibodies from RA patients. Of interest, anti-P25 autoantibodies are detected in 21% of anti-CCP (cyclic citrullinated peptides) negative RA patients. Anti-BRAF autoantibodies activate the in vitro phosphorylation of MEK1 mediated by BRAF.CONCLUSIONS:Anti-BRAF autoantibodies from RA patients preferentially recognize one BRAF peptide: P25. Autoantibody responses to P25 are detected in 21% of anti-CCP negative RA patients. Most anti-BRAF autoantibodies activate BRAF kinase activity

    Bead arrays for antibody and complement profiling reveal joint contribution of antibody isotypes to C3 deposition

    Get PDF
    The development of antigen arrays has provided researchers with great tools to identify reactivities against self or foreign antigens from body fluids. Yet, these approaches mostly do not address antibody isotypes and their effector functions even though these are key points for a more detailed understanding of disease processes. Here, we present a bead array-based assay for a multiplexed determination of antigen-specific antibody levels in parallel with their properties for complement activation. We measured the deposition of C3 fragments from serum samples to reflect the degree of complement activation via all three complement activation pathways. We utilized the assay on a bead array containing native and citrullinated peptide antigens to investigate the levels of IgG, IgM and IgA autoantibodies along with their complement activating properties in serum samples of 41 rheumatoid arthritis patients and 40 controls. Our analysis revealed significantly higher IgG reactivity against the citrullinated fibrinogen β and filaggrin peptides as well as an IgA reactivity that was exclusive for citrullinated fibrinogen β peptide and C3 deposition in rheumatoid arthritis patients. In addition, we characterized the humoral immune response against the viral EBNA-1 antigen to demonstrate the applicability of this assay beyond autoimmune conditions. We observed that particular buffer compositions were demanded for separate measurement of antibody reactivity and complement activation, as detection of antigen-antibody complexes appeared to be masked due to C3 deposition. We also found that rheumatoid factors of IgM isotype altered C3 deposition and introduced false-positive reactivities against EBNA-1 antigen. In conclusion, the presented bead-based assay setup can be utilized to profile antibody reactivities and immune-complex induced complement activation in a high-throughput manner and could facilitate the understanding and diagnosis of several diseases where complement activation plays role in the pathomechanism

    Tertiary Lymphoid Organs in Rheumatoid Arthritis.

    Get PDF
    Rheumatoid Arthritis (RA) is a chronic systemic autoimmune disease. RA mainly affects the joints, with inflammation of the synovial membrane, characterized by hyperplasia, neo-angiogenesis, and immune cell infiltration that drives local inflammation and, if untreated, can lead to joint destruction and disability. In parallel to the well-known clinical heterogeneity, the underlying synovitis can also be significantly heterogeneous. In particular, in about 40% of patients with RA, synovitis is characterized by a dense lymphocytic infiltrate that can acquire the features of fully functional tertiary lymphoid organs (TLO). These structures amplify autoimmunity and inflammation locally associated with worse prognosis and potential implications for treatment response. Here, we will review the current knowledge on TLO in RA, with a focus on their pathogenetic and clinical relevance

    Volatile composition of Gyrophragmium dunalii

    No full text
    International audienceGyrophragmium dunalii was investigated for volatile compounds by GC/MS. Thirty volatile components were identified. The major volatile constituents of mushrooms from the Mediterranean basin and Atlantic Ocean sand dunes were benzaldehyde (44.2% and 27.6%, respectively) and benzyl alcohol (11.0% and 38.0%, respectively). The volatile component proportions correspond to 410 and 990 µg.g-1of fresh weight from Mediterranean and Atlantic specimens, respectively. Combined benzaldehyde and benzyl alcohol content is the key compound content responsible for the complex almond odor with an anise note of G. dunalii. Benzaldehyde with its bitter almond odor is widely used as an aroma component in food, cosmetics and flavor industries

    Epitopes of human fibrin recognized by the rheumatoid arthritis-specific autoantibodies to citrullinated proteins

    No full text
    International audienceFormation of the epitopes recognized by the rheumatoid arthritis (RA)-specific autoantibodies to citrullinated proteins (ACPA) on filaggrin and on the alpha- and beta-chains of fibrin, their synovial target, requires conversion of their arginyl residues into citrullyl residues, but is also affected by their amino-acyl environment. Using competition with five citrullinated filaggrin-derived peptides bearing major ACPA epitopes, we confirmed the close cross-reactivity between filaggrin and citrullinated fibrin. To identify the sequential epitopes recognized on fibrin by ACPA, 71 citrullinated 15-mer peptides derived from all the sites of the alpha- and beta-chains of fibrin harboring arginyl residues were tested by ELISA using ACPA-positive RA sera exhibiting different reactivity profiles to the five filaggrin peptides. We identified 18 fibrin-derived peptides bearing ACPA epitopes. Regarding the ability of fibrinogen arginyl residues to be citrullinated in vitro, 11 of the peptides likely correspond to in vivo targeted epitopes. Two out of them bear major epitopes and are located in the central globular domain of the protein. In the synovial tissue, fibrin citrullination and ACPA binding could impair fibrin degradation by plasmin. The immunological conflict between ACPA and fibrin could therefore sustain synovial inflammation not only via pro-inflammatory effector mechanisms but also via impairment of fibrinolysis
    • …
    corecore