33 research outputs found

    Contributions of scale: What we stand to gain from Indigenous and local inclusion in climate-health monitoring and surveillance systems

    Get PDF
    Understanding how climate change will affect global health is a defining challenge this century. This is predicated, however, on our ability to combine climate and health data to investigate the ways in which variations in climate, weather, and health outcomes interact. There is growing evidence to support the value of place- and community-based monitoring and surveillance efforts, which can contribute to improving both the quality and equity of data collection needed to investigate and understand the impacts of climate change on health. The inclusion of multiple and diverse knowledge systems in climate-health surveillance presents many benefits, as well as challenges. We conducted a systematic review, synthesis, and confidence assessment of the published literature on integrated monitoring and surveillance systems for climate change and public health. We examined the inclusion of diverse knowledge systems in climate-health literature, focusing on: 1) analytical framing of integrated monitoring and surveillance system processes 2) key contributions of Indigenous knowledge and local knowledge systems to integrated monitoring and surveillance systems processes; and 3) patterns of inclusion within these processes. In total, 24 studies met the inclusion criteria and were included for data extraction, appraisal, and analysis. Our findings indicate that the inclusion of diverse knowledge systems contributes to integrated climate-health monitoring and surveillance systems across multiple processes of detection, attribution, and action. These contributions include: the definition of meaningful problems; the collection of more responsive data; the reduction of selection and source biases; the processing and interpretation of more comprehensive datasets; the reduction of scale dependent biases; the development of multi-scale policy; long-term future planning; immediate decision making and prioritization of key issues; as well as creating effective knowledge-information-action pathways. The value of our findings and this review is to demonstrate how neither scientific, Indigenous, nor local knowledge systems alone will be able to contribute the breadth and depth of information necessary to detect, attribute, and inform action along these pathways of climate-health impact. Rather, it is the divergence or discordance between the methodologies and evidences of different knowledge systems that can contribute uniquely to this understanding. We critically discuss the possibility of what we, mainly local communities and experts, stand to lose if these processes of inclusion are not equitable. We explore how to shift the existing patterns of inclusion into balance by ensuring the equity of contributions and justice of inclusion in these integrated monitoring and surveillance system processes

    Integrated Genomic Analysis of the Ubiquitin Pathway across Cancer Types

    Get PDF
    Protein ubiquitination is a dynamic and reversibleprocess of adding single ubiquitin molecules orvarious ubiquitin chains to target proteins. Here,using multidimensional omic data of 9,125 tumorsamples across 33 cancer types from The CancerGenome Atlas, we perform comprehensive molecu-lar characterization of 929 ubiquitin-related genesand 95 deubiquitinase genes. Among them, we sys-tematically identify top somatic driver candidates,including mutatedFBXW7with cancer-type-specificpatterns and amplifiedMDM2showing a mutuallyexclusive pattern withBRAFmutations. Ubiquitinpathway genes tend to be upregulated in cancermediated by diverse mechanisms. By integratingpan-cancer multiomic data, we identify a group oftumor samples that exhibit worse prognosis. Thesesamples are consistently associated with the upre-gulation of cell-cycle and DNA repair pathways, char-acterized by mutatedTP53,MYC/TERTamplifica-tion, andAPC/PTENdeletion. Our analysishighlights the importance of the ubiquitin pathwayin cancer development and lays a foundation fordeveloping relevant therapeutic strategies

    Delayed mucosal anti-viral responses despite robust peripheral inflammation in fatal COVID-19

    Get PDF
    Background While inflammatory and immune responses to SARS-CoV-2 infection in peripheral blood are extensively described, responses at the upper respiratory mucosal site of initial infection are relatively poorly defined. We sought to identify mucosal cytokine/chemokine signatures that distinguished COVID-19 severity categories, and relate these to disease progression and peripheral inflammation. Methods We measured 35 cytokines and chemokines in nasal samples from 274 patients hospitalised with COVID-19. Analysis considered the timing of sampling during disease, as either the early (0-5 days post-symptom onset) or late (6-20 days post-symptom onset). Results Patients that survived severe COVID-19 showed IFN-dominated mucosal immune responses (IFN-Îł, CXCL10 and CXCL13) early in infection. These early mucosal responses were absent in patients that would progress to fatal disease despite equivalent SARS-CoV-2 viral load. Mucosal inflammation in later disease was dominated by IL-2, IL-10, IFN-Îł, and IL-12p70, which scaled with severity but did not differentiate patients who would survive or succumb to disease. Cytokines and chemokines in the mucosa showed distinctions from responses evident in the peripheral blood, particularly during fatal disease. Conclusions Defective early mucosal anti-viral responses anticipate fatal COVID-19 but are not associated with viral load. Early mucosal immune responses may define the trajectory of severe COVID-19

    The P323L substitution in the SARS-CoV-2 polymerase (NSP12) confers a selective advantage during infection

    Get PDF
    Background The mutational landscape of SARS-CoV-2 varies at the dominant viral genome sequence and minor genomic variant population. During the COVID-19 pandemic, an early substitution in the genome was the D614G change in the spike protein, associated with an increase in transmissibility. Genomes with D614G are accompanied by a P323L substitution in the viral polymerase (NSP12). However, P323L is not thought to be under strong selective pressure. Results Investigation of P323L/D614G substitutions in the population shows rapid emergence during the containment phase and early surge phase during the first wave. These substitutions emerge from minor genomic variants which become dominant viral genome sequence. This is investigated in vivo and in vitro using SARS-CoV-2 with P323 and D614 in the dominant genome sequence and L323 and G614 in the minor variant population. During infection, there is rapid selection of L323 into the dominant viral genome sequence but not G614. Reverse genetics is used to create two viruses (either P323 or L323) with the same genetic background. L323 shows greater abundance of viral RNA and proteins and a smaller plaque morphology than P323. Conclusions These data suggest that P323L is an important contribution in the emergence of variants with transmission advantages. Sequence analysis of viral populations suggests it may be possible to predict the emergence of a new variant based on tracking the frequency of minor variant genomes. The ability to predict an emerging variant of SARS-CoV-2 in the global landscape may aid in the evaluation of medical countermeasures and non-pharmaceutical interventions

    A prenylated dsRNA sensor protects against severe COVID-19

    Get PDF
    Inherited genetic factors can influence the severity of COVID-19, but the molecular explanation underpinning a genetic association is often unclear. Intracellular antiviral defenses can inhibit the replication of viruses and reduce disease severity. To better understand the antiviral defenses relevant to COVID-19, we used interferon-stimulated gene (ISG) expression screening to reveal that OAS1, through RNase L, potently inhibits SARS-CoV-2. We show that a common splice-acceptor SNP (Rs10774671) governs whether people express prenylated OAS1 isoforms that are membrane-associated and sense specific regions of SARS-CoV-2 RNAs, or only express cytosolic, nonprenylated OAS1 that does not efficiently detect SARS-CoV-2. Importantly, in hospitalized patients, expression of prenylated OAS1 was associated with protection from severe COVID-19, suggesting this antiviral defense is a major component of a protective antiviral response

    Systems glycobiology for discovering drug targets, biomarkers, and rational designs for glyco-immunotherapy

    No full text
    Abstract Cancer immunotherapy has revolutionized treatment and led to an unprecedented wave of immuno-oncology research during the past two decades. In 2018, two pioneer immunotherapy innovators, Tasuku Honjo and James P. Allison, were awarded the Nobel Prize for their landmark cancer immunotherapy work regarding “cancer therapy by inhibition of negative immune regulation” –CTLA4 and PD-1 immune checkpoints. However, the challenge in the coming decade is to develop cancer immunotherapies that can more consistently treat various patients and cancer types. Overcoming this challenge requires a systemic understanding of the underlying interactions between immune cells, tumor cells, and immunotherapeutics. The role of aberrant glycosylation in this process, and how it influences tumor immunity and immunotherapy is beginning to emerge. Herein, we review current knowledge of miRNA-mediated regulatory mechanisms of glycosylation machinery, and how these carbohydrate moieties impact immune cell and tumor cell interactions. We discuss these insights in the context of clinical findings and provide an outlook on modulating the regulation of glycosylation to offer new therapeutic opportunities. Finally, in the coming age of systems glycobiology, we highlight how emerging technologies in systems glycobiology are enabling deeper insights into cancer immuno-oncology, helping identify novel drug targets and key biomarkers of cancer, and facilitating the rational design of glyco-immunotherapies. These hold great promise clinically in the immuno-oncology field

    ImmCellFie: A user-friendly web-based platform to infer metabolic function from omics data

    No full text
    Summary: Understanding cellular metabolism is important across biotechnology and biomedical research and has critical implications in a broad range of normal and pathological conditions. Here, we introduce the user-friendly web-based platform ImmCellFie, which allows the comprehensive analysis of metabolic functions inferred from transcriptomic or proteomic data. We explain how to set up a run using publicly available omics data and how to visualize the results. The ImmCellFie algorithm pushes beyond conventional statistical enrichment and incorporates complex biological mechanisms to quantify cell activity.For complete details on the use and execution of this protocol, please refer to Richelle et al. (2021).1 : Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics
    corecore