1,311 research outputs found

    Capturing industrial CO2 emissions in Spain: Infrastructures, costs and break-even prices

    Get PDF
    This paper examines the conditions for the deployment of large-scale pipeline and storage infrastructure needed for the capture of CO2 in Spain by 2040. It details a modeling framework that allows us to determine the optimal infrastructure needed to connect a geographically disaggregated set of emitting and storage clusters, along with the threshold CO2 values necessary to ensure that the considered emitters will make the necessary investment decisions. This framework is used to assess the relevance of various policy scenarios, including (i) the perimeter of the targeted emitters for a CCS uptake, and (ii) the relevance of constructing several regional networks instead of a single grid to account for the spatial characteristics of the Spanish peninsula. We find that three networks naturally emerge in the north, center and south of Spain. Moreover, the necessary CO2 break-even price critically depends on the presence of power stations in the capture perimeter. Policy implications of these findings concern the elaboration of relevant, pragmatic recommendations to envisage CCS deployment locally, focusing on emitters with lower substitution options toward low-carbon alternatives

    A Generalized Nash-Cournot Model for the North-Western European Natural Gas Markets with a Fuel SubstitutionDemand Function: The GaMMES Model

    Get PDF
    This article presents a dynamic Generalized Nash-Cournot model to describe the evolution of the natural gas markets. The aim of this work is to provide a theoretical framework that would allow us to analyze future infrastructure and policy developments, while trying to answer some of the main criticisms addressed to Cournot-based models of natural gas markets. The major gas chain players are depicted including: producers, consumers, storage and pipeline operators, as well as intermediate local traders. Our economic structure description takes into account market power and the demand representation tries to capture the possible fuel substitution that can be made between the consumption of oil, coal and natural gas in the overall fossil energy consumption. We also take into account the long-term aspects inherent to some markets, in an endogenous way. This particularity of our description makes the model a Generalized Nash Equilibrium problem that needs to be solved using specialized mathematical techniques. Our model has been applied to represent the European natural gas market and forecast, until 2030, after a calibration process, consumption, prices, production and natural gas dependence. A comparison between our model, a more standard one that does not take into account energy substitution, and the European Commission natural gas forecasts is carried out to analyze our results. Finally, in order to illustrate the possible use of fuel substitution, we studied the evolution of the natural gas price as compared to the coal and oil prices. This paper mostly focuses on the model description.Energy markets modeling, Game theory, Generalized Nash-Cournot equilibria, Quasi-Variational Inequality

    Evidence for Letter-Specific Position Coding Mechanisms

    Get PDF
    International audienceThe perceptual matching (same-different judgment) paradigm was used to investigate precision in position coding for strings of letters, digits, and symbols. Reference and target stimuli were 6 characters long and could be identical or differ either by transposing two characters or substituting two characters. The distance separating the two characters was manipulated such that they could either be contiguous, separated by one intervening character, or separated by two intervening characters. Effects of type of character and distance were measured in terms of the difference between the transposition and substitution conditions (transposition cost). Error rates revealed that transposition costs were greater for letters than for digits, which in turn were greater than for symbols. Furthermore, letter stimuli showed a gradual decrease in transposition cost as the distance between the letters increased, whereas the only significant difference for digit and symbol stimuli arose between contiguous and non-contiguous changes, with no effect of distance on the non-contiguous changes. The results are taken as further evidence for letter-specific position coding mechanisms

    Hydrodynamic dispersion within porous biofilms

    Get PDF
    Many microorganisms live within surface-associated consortia, termed biofilms, that can form intricate porous structures interspersed with a network of fluid channels. In such systems, transport phenomena, including flow and advection, regulate various aspects of cell behavior by controlling nutrient supply, evacuation of waste products, and permeation of antimicrobial agents. This study presents multiscale analysis of solute transport in these porous biofilms. We start our analysis with a channel-scale description of mass transport and use the method of volume averaging to derive a set of homogenized equations at the biofilm-scale in the case where the width of the channels is significantly smaller than the thickness of the biofilm. We show that solute transport may be described via two coupled partial differential equations or telegrapher's equations for the averaged concentrations. These models are particularly relevant for chemicals, such as some antimicrobial agents, that penetrate cell clusters very slowly. In most cases, especially for nutrients, solute penetration is faster, and transport can be described via an advection-dispersion equation. In this simpler case, the effective diffusion is characterized by a second-order tensor whose components depend on (1) the topology of the channels' network; (2) the solute's diffusion coefficients in the fluid and the cell clusters; (3) hydrodynamic dispersion effects; and (4) an additional dispersion term intrinsic to the two-phase configuration. Although solute transport in biofilms is commonly thought to be diffusion dominated, this analysis shows that hydrodynamic dispersion effects may significantly contribute to transport
    corecore