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Abstract

This article presents a dynamic Generalized Nash-Cournot model to describe the evolu-
tion of the natural gas markets. The aim of this work is to provide a theoretical framework
that would allow us to analyze future infrastructure and policy developments, while trying
to answer some of the main criticisms addressed to Cournot-based models of natural gas
markets. The major gas chain players are depicted including: producers, consumers, storage
and pipeline operators, as well as intermediate local traders. Our economic structure descrip-
tion takes into account market power and the demand representation tries to capture the
possible fuel substitution that can be made between the consumption of oil, coal and natural
gas in the overall fossil energy consumption. We also take into account the long-term aspects
inherent to some markets, in an endogenous way. This particularity of our description makes
the model a Generalized Nash Equilibrium problem that needs to be solved using specialized
mathematical techniques. Our model has been applied to represent the European natural gas
market and forecast, until 2030, after a calibration process, consumption, prices, production
and natural gas dependence. A comparison between our model, a more standard one that
does not take into account energy substitution, and the European Commission natural gas
forecasts is carried out to analyze our results. Finally, in order to illustrate the possible use
of fuel substitution, we studied the evolution of the natural gas price as compared to the
coal and oil prices. This paper mostly focuses on the model description.

keywords
Energy markets modeling, Game theory, Generalized Nash-Cournot equilibria, Quasi-Variational
Inequality.

1 Introduction

Quantitative studies and mathematical models are necessary to understand the economic and
strategic issues that define energy markets in the world. In that vein, the study of natural
gas markets is particularly interesting because most of them, particularly in Europe, show a
high dependence on a small number of producers exports. According to Mathiesen & al. [29],
this market structure can be analyzed thanks to strategic interactions and market power. This
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†EDF Research and Development, France
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market power can be exerted at the different stages of the gas chain: by the producers in the
upstream market or the local intermediate traders in the downstream market. The European
markets are also characterized by long-term contracts established between the producers and
the intermediate local independent traders. These long-term contracts were initially designed
as a risk-sharing measure between producers and local traders. They are usually analyzed, in
particular, as a tool to mitigate the producers market power. The combination of the strategic
interactions and the long-term contracts makes the study of the natural gas markets evolution
particularly subtle and rich.

The economic literature provides an important panel of numerical models whose objective is
to describe the natural gas trade structure. As an example, we can cite the "World Trade Gas
Model" (Baker Institute) [34], the "EUGAS" model (Cologne University) [33], the "GASTALE"
model (Energy Research Centre of the Netherlands) [27] or the "World Gas Model" (University
of Maryland) ([7], an extension of the work developed in [12] and [13]). However, most of these
models present some necessary simplifying assumptions concerning either the description of the
market economic structure or the demand function. For instance, the "EUGAS" model assumes
pure and perfect competition between the players and thus neglects market power to allow a
detailed description of the infrastructure. The "GASTALE" and "World Gas Model" depict
strategic interactions between the players via a Nash-Cournot competition and the latter model
also uses exogenous long-term contracts. However, the former model does not include investments
in production or in pipeline and storage infrastructure. Besides, the demand representation for
all these previous models does not take explicitly into account the possible substitution between
different types of fuels (natural gas, oil and coal for instance). All these drawbacks have been
analyzed in detail in [36]

The model we develop, named GaMMES, Gas Market Modeling with Energy Substitution,
tries to address some of the limitations proposed in [36]. It also is based on an oligopolistic
approach of the natural gas markets. The interaction between all the players is a Generalized
Nash-Cournot competition and we explicitly take into consideration, in an endogenous way, the
long-term contractual aspects (prices and volumes) of the markets. Our representation of the
demand is new and rich because it includes the possible substitution, within the overall energy
consumption, between different types of fuels. Hence, in our work, we mitigate market power
exerted by the strategic players: they cannot force the natural gas price up freely because some
consumers would switch to other fuels.

We study both the upstream and downstream stages of the gas chain, while modeling the
possible strategic interactions between all the players, through all the stages. The production side
is detailed at the production field level and we choose a functional form derived from Golombek
[16] for the production costs. We assume, in our representation that the producers sell their gas
through long-term contracts to a set of independent traders who sell it back to end-users, where
the Nash-Cournot competition is exerted. Storage and transportation aspects are taken care of
by global regulated storage and transportation operators. Producers also have the possibility to
directly target end-users for their sales. Both producers and independent traders share market
power. The long-term contracts are endogenous to our model and this property (among others)
makes our formulation a Generalized Nash-Cournot game. The introduction in our model of the
independent traders, that can exert market power in the sport markets is a new feature in the
description of the natural gas trade. This allows us to represent long-term contracts and mitigate
the producers’ market power.

The demand side is also detailed. We use a system dynamics approach [2] in order to model
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possible fuel substitutions within the global energy demand of a consuming country, between
the consumption of coal, oil and natural gas. This approach allows us to derive a new and
interesting mathematical functional form for the demand function that includes naturally the
competition between these. This particular new feature of the gas markets description, we have
introduced in our model, induces a flexibility in the gas demand representation. It allows us,
for example, to study the sensitivity of the gas consumption and prices over the oil and coal prices.

We include all the possible investments in the gas chain (production, infrastructure, etc.)
and make the long-term contracts prices and quantities endogenous to the model thanks to an
MCP (mixed complementarity problem) formulation.

The remaining parts of the paper are as follows: the first part is a general description of the
choosen economic structure representation. All the players are presented and are divided into two
categories: the strategic and the non-strategic ones. The strategic interaction is also detailed
in this part. The second part presents the notation used and a brief description of a system
dynamics approach to model the consumers’ behavior investment in coal, oil or natural gas so
that their utility is optimized. The third part is dedicated to the mathematical representation
of the markets: the optimization programs associated with all the strategic and non-strategic
players are presented and discussed. We also explain in this part how we make the long-term
contracts’ prices and volumes endogenous to our model. The next part is an application of
our model to the European natural gas trade where the calibration process and the results are
discussed. A comparison between our model, a more standard one where the demand does not
take into consideration fuel substitution and the European Commission natural gas forecast is
carried out in order to compare between the results. The last part summarizes the work.

2 The model

2.1 Economic description

Our description of the natural gas markets divides them into two stages.

The upstream market is represented by gas producers, each with a dedicated trader (export
division) to sell gas to other traders or directly to end-users. An example would be Gazexport
for Gazprom. The set of producers and dedicated traders is denoted as P .

Besides the market players just mentioned, there are a number of independent traders whose
activity is to buy gas from the big producers (or their traders) and to sell it to the final users in
the downstream market. This type of traders includes all the firms whose production is small,
compared to their sales (e.g., EDF and GDF-SUEZ1). The associated index for these players is I.

The different target markets (the consumers) are divided into three sectors: power generation,
industrial, and residential, represented respectively as D1, D2 and D3. However, it is easy to
demonstrate that if the sectors do not interact with each other (i.e., the different demand curves
are independent), the study of only one sector can easily be generalized to the three. We will
make the assumption that the different demand curves do not interact (as an example, the gas
price in the industrial sector does not depend a priori on the residential price), which may not
be realistic for some situations. Hence, to simplify our notation and modeling, we will consider
only one consumption set D to represent each country total gross natural gas consumption.

1GDF-SUEZ produces 4.4 % of its natual gas supplies [15]
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We assume that each dedicated trader can either establish long-term contracts with the in-
dependent traders or sell his gas to the spot markets.

The first situation corresponds to a gas trade under a fixed, contracted price, not dependent
on the quantities sold (in a first approximation). These quantities are also fixed by the contract.
The second situation is characterized by the fact that the spot price is a consequence of the
competition between all the traders in the downstream markets, via a specified inverse demand
function.

All the traders compete via a Nash-Cournot interaction, during a finite number of yearsNum.
Time will be indexed by t ∈ T (five-year time steps) and we will take into account seasonality
by distinguishing, for each year t, between the off-peak and peak seasons. The seasons will be
indexed by M . They correspond basically to different demand regimes.
The main advantage of the GaMMES model is that it takes into account, in an endogenous
way, long-term contracts between the independent traders and the producers. Obviously, this
representation is quite realistic for the natural gas trade since the latter is still dominated by
long-term selling/purchase prices and volumes. The long-term contracts imports represented, in
2004, more than 46% of the European natural gas consumption and 80% of the total European
imports [8] and [22]. Another advantage inherent to our description is that the inverse demand
function takes explicitly into consideration the possible substitution between consumption for
natural gas and the competing fuels.

Considering the energy substitutions in the natural gas demand mitigates the market power
that can be exerted by all the strategic players in the end-use markets. Indeed, this is due to the
fact that the consumers have the ability to reduce the natural gas share in their energy mixes if
the market price for natural gas is much higher than the substitution fuel’s (such as oil and coal)
price. Therefore, the producers may not have a considerable incentive to reduce their natural gas
production in order to force the price up. This model property allows us to take into account the
natural gas price dependence on oil and coal prices. Indeed, the Nash-Cournot interaction will
link the natural gas price to the coal and oil prices because of the demand function dependence
on these parameters.

In order to take into consideration the intra and extra-European physical network of the
transport and distribution networks, we need to introduce a pipeline operator whose role is to
minimize the transmission costs over all the arcs of the topology. We denote by N the set of all
the nodes including the production fields, the consuming markets and the storage sites. Added
to the transport cost minimization objective, the pipeline operator has also the possibility to
make investments in order to increase the arc capacities, if necessary.

All the arc transport costs are exogenous to the model. The congestion prices are taken into
consideration endogenously: they can be obtained by computing the dual variables correspond-
ing to the infrastructure capacity constraint. The set of all these arcs is A. An arc can either be
a pipeline or an LNG route.

In order to be able to meet high levels of consumption, we assume that the independent
traders have access to a set of storage sites to store natural gas in the off-peak season, and
withdraw it in the peak one. Obviously, they have to support a capacity reservation, storage,
withdrawal and transport costs. All the storage nodes, indexed by the set S, are managed by a
global storage operator player. This player can invest in order to increase the storage capacity
of each site.
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Both the pipeline and storage operators are assumed not to have market power. The stor-
age and transport costs are hence exogenous to the model. The strategic players are therefore
the producers/dedicated traders and the independent traders. Obviously, this assumption is an
important simplification of reality, where market power can also be exerted by the storage and
pipeline operators. However, it is consistent with what can be found in the literature [7], [27].
The storage cost, which is assumed to be supported by the independent traders, is represented
thanks to capacity reservation and storage/withdrawal costs. We consider that the average time
for the storage investments to be realized is delays years (five years). The situation is similar for
the infrastructure (delayi) and production capacity investments (delayp) costs supported by the
pipeline operator and the producers.

We take into consideration the depreciation of the production capacity in the upstream side
of the market by introducing a depreciation factor per time unit, at each production node: depf .
To simplify the model, (and because of lack of data concerns) we decided not to take into account
the transport capacity depreciations.

2.2 Notation

The units choosen for the model are the following: quantities in toe (i.e., Ton Oil Equivalent) or
Bcm and unit prices in $/toe or $/cm.
The following table summarizes the notation chosen for the exogenous parameters and the en-
dogenous variables.
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Exogenous factors

P set of producers-dedicated traders
I set of independent traders
D set of gas consuming countries in the downstream market

(no distinction between the sectors) D ⊂ N
T time T = {0, 1, 2, ..., Num}
M set of seasons. Off-peak (low-consumption) and peak (high-consumption) regimes
F set of all the gas production fields. F ⊂ N
N set of the nodes
S set of the storage sites S ⊂ N
A set of the arcs (topology)
Rff field f ’s total gas resources (endowment)
Kff field f ’s initial capacity of production, year 0
Ics injection marginal cost at storage site s (constant)
Wcs withdrawal marginal cost at storage site s (constant)
Rcs reservation marginal cost at storage site s (constant)
Pcf production cost function, field f
Tca transport marginal cost through arc a (constant)
Tka pipeline initial capacity through arc a, year 0
Kss initial storage capacity at site s, year 0
Iss investment marginal costs in storage (constant)
Ipf investment marginal costs in production (constant)
Ika investment marginal costs in pipeline capacity through arc a (constant)
O incidence matrix ∈ MF×P . Ofp = 1 if and only if producer p owns field f
B incidence matrix ∈ MI×D. Bid = 1 if and only if trader i is located at the consumption node d
M1 incidence matrix ∈ MF×N . M1fn = 1 if and only if node n has field f
M2 incidence matrix ∈ MI×N . M2in = 1 if and only if trader i is located at node n
M3 incidence matrix ∈ MD×N . M3dn = 1 if and only if node n has market d
M4 incidence matrix ∈ MS×N . M4sn = 1 if and only if node n has storage site s
M5 incidence matrix ∈ MA×N . M5an = 1 if and only if arc a starts at node n
M6 incidence matrix ∈ MA×N . M6an = 1 if and only if arc a ends at node n
H maximum value for the quantities produced and consumed

We could have used different upper bounds for the different variables. However, to simplify the
notation, we will use the same value H.

flf field f ’s flexibility: the maximum modulation
between production during off-peak and peak seasons

minpi percentage of the minimum quantity that has to be exchanged on the long-term contract trade
between i and p

δ discount factor
delays,i,p period of time necessary to undertake the technical investments
lossa loss factor through arc a
depf depreciation factor of the production capacity at field f

6



Endogenous variables

xtmfpd quantity of gas produced by p from field f for the end-use market d, year t, season m
in Bcm

zptmfpi quantity of gas produced by p from field f dedicated to the long-term contract
with trader i, year t, season m
in Bcm

zitmpi quantity of gas bought by trader i from producer p with a long-term contract
year t, season m
in Bcm

uppi quantity of gas sold by producer p to trader i with a long-term contract, each year
in Bcm

uipi quantity of gas bought by trader i from producer p on the long-term contract, each year
in Bcm

ytmid quantity of gas sold by i to the market d, year t, season m
in Bcm

iptfp producer p’s increase of field f ’s production capacity, due to investments in production, year t
in Bcm/time unit

qtmfp production of producer p from field f , year t, season m
in Bcm

ptmd market d’s gas price, result of the Cournot competition between all the traders, year t, season m
in $/cm

ηpi long-term contract price contracted between producer p and trader i
in $/cm

rtis amount of storage capacity reserved by trader i at site s, year t
in Bcm

intis volume injected by trader i at site s, year t
in Bcm

ists increase of storage capacity at site s, year t due to the storage operator investments
in Bcm/time unit

ikta increase of the pipeline capacity through arc a, year t, due to the TSO investments
in Bcm/time unit

fptmpa gas quantity that flows through arc a from producer p
year t, season m
in Bcm

fitmia gas quantity that flows through arc a from trader i
year t, season m
in Bcm

τ tma the dual variable associated with arc a capacity constraint
year t, season m
in $/cm. It represents the congestion transportation cost over arc a

The table is divided into two parts. The upper half represents the exogenous parameters or
functions whereas the lower half represents the different decision variables and the inherent retail
prices.
The indices p, d, i, f , n, s, a, m and t are such that p ∈ P , d ∈ D, i ∈ I f ∈ F , n ∈ N , s ∈ S,
a ∈ A, m ∈M and t ∈ T .
The long-term contract between producer p and trader i fixes both a unit selling price and an
amount to be purchased by the independent trader i each year from producer p. Both price and
quantity will be specified endogenously by the model.
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Matrix O is such that Ofp = 1 if producer p owns field f and Ofp = 0 otherwise.

Figure 1 represents a schematic overview of GaMMES.

Figure 1:
The market representation in GaMMES

2.3 The inverse demand function

We need to specify a functional form for the inverse demand function, which links the price
pd at market d to the quantity brought to the market. Most of the natural gas models [34],
[33], [27], [7] do not take into account fuel substitution. Let h be the specific inverse demand
function. We assume that the long-term contract quantities do not directly influence the market
competition price, which is to say that ptmd = h(

∑
i y
t
mid +

∑
f

∑
p x

t
mfpd). (Actually, this

assumption is necessary to guarantee the concavity of the objective functions of each strategic
player’s maximization problem, regardless of the quantities decided by the other competitors.
Otherwise, this assumption can be dropped if linear functions are used).
As mentioned in the introduction, we want to capture the inter-fuel substitution in the global
energy consumption. To be able to do so, we used a system dynamics approach that models
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the behavior of the consumers who have to decide whether they invest in new burners that use
either oil, coal or natural gas. Our putty-clay model, based on the work presented in [32], is fully
developed in [2]. If we denote by Qtmd the quantity

∑
i y
t
mid +

∑
f

∑
p x

t
mfpd, our gas demand

study [2] provides the following inverse demand function:

ptmd = pctmd +
1
γtmd

atanh
(
αt
md+β

t
md−Q

t
md

αt
md

)
if Qtmd ≥ βtmd +

αt
mdβ

t
md

αt
md+β

t
md

p′ctmd +
1
γ′tmd

atanh
(
α′tmd+β

′t
md−Q

t
md

α′tmd

)
if Qtmd ≤ βtmd +

αt
mdβ

t
md

αt
md+β

t
md

(1)

where the parameters α, β, γ and pc, which are time and season-dependent must be calibrated.

The distinction between the domains Qtmd ≥ βtmd +
αt
mdβ

t
md

αt
md+β

t
md

and Qtmd ≤ βtmd +
αt
mdβ

t
md

αt
md+β

t
md

is
needed to take into account the anticipated scrapping of burners and avoid absurd situations
where the price rises towards +∞ (and also to guarantee the concavity of the objective func-
tions). The parameters α′, β′, γ′ and p′c are calculated to guarantee the continuity of h and its
derivative h′. To make the price converge toward 0 when the quantity goes to +∞, we need to
force β′ = 0

The function atanh is such that:

∀x ∈ (−1, 1) atanh(x) = 1

2
ln
(
1 + x

1− x

)
The following table gives the values of the inverse demand function parameters, for the

global natural gas consumption in year 2003 in France, Germany, Italy, the UK, Belgium and
the Netherlands. The natural gas volumes in 2002 are exogenous.

Parameters France Germany Italy UK Belgium The Netherlands
β(×103ktoe) 22.87 43.70 41.28 41.88 22.89 23.49

α(×103ktoe) 2.76 4.00 3.60 2.80 2.76 1.05

pc($/toe) 172.5 242.9 268.3 175.8 230.4 217.5

γ(×10−2($/toe)−1) 0.72 0.98 0.96 1.00 1.48 0.88

β′(×103ktoe) 0.00 0.00 0.00 0.00 0.00 0.00

α′(×103ktoe) 13.20 24.67 23.23 23.18 13.20 12.81

p′c($/toe) 350.8 404.1 441.2 379.5 316.6 549.1

γ′(×10−2($/toe)−1) 0.96 1.03 0.96 0.79 1.99 0.48

Figure 2 gives the demand function shape (i.e., the variation of the quantity Qd over the
price pd in a given market).

Actually, as described in the economic description of the markets, we need to distinguish
between the off-peak/peak season parameters of the inverse demand function.

To calibrate the demand function for the future, we need to specify a scenario for the global
fossil energy demand and the oil and coal market prices. Our system dynamics approach [2] will
allow us to understand how the global demand is going to be shared between the consumption
of the three fuels.

2.4 The mathematical description

This section details the mathematical description of our model. It presents the optimization
problems of all the supply chain players. Note that the dual variables are written in parentheses
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Figure 2:
The demand function

by their associated constraints.

Producer p’s maximization program is given below. The corresponding decision
variables are zptmfpi, x

t
mfpd, ip

t
fp, q

t
mfp and uppi.

10



Max ∑
t,m,f,i

δtηpi(zp
t
mfpi)

+
∑
t,m,f,d

δt
(
ptmd(x

t
mfpd + xtmfpd)

)
xtmfpd

−
∑
t,f

δtPcf

∑
t′≤t

∑
m

qt
′
mfp, Rff


+
∑
t,f

δtPcf

(∑
t′<t

∑
m

qt
′
mfp, Rff

)
−
∑
t,f

δtIpf ip
t
fp

−
∑
t,m,p,a

δt((Tca + τ tma)fp
t
mpa)

such that:

∀t, f,
∑
p

∑
t′≤t

∑
m

qt
′
mfp −Rff ≤ 0 (φtf ) (2a)

∀t, f, m,
∑
p

qtmfp −Kff (1− depf )t

−
∑
p

∑
t′≤t−delayp

ipt
′
fp(1− depf )t−t

′ ≤ 0 (χtmf ) (2b)

∀t, m, f, − qtmfp +

(∑
i

zptmfpi +
∑
d

xtmfpd

)
≤ 0 (γtmfp) (2c)

∀t, f
∑
m

∑
p

((−1)mqtmfp)− flf ≤ 0 (ϑ1tf ) (2d)

∀t, f, −
∑
m

∑
p

((−1)mqtmfp)− flf ≤ 0 (ϑ2tf ) (2e)

∀t, f, d, m, xtmfpd −OfpH ≤ 0 (ε1tmfpd) (2f)

∀t, f, i, m, zptmfpi −OfpH ≤ 0 (ε2tmfpi) (2g)

∀t, f, m, qtmfp −OfpH ≤ 0 (ε3tmfp) (2h)

∀t, f, iptfp −OfpH ≤ 0 (ε4tfp) (2i)

∀t, m, n,
∑
a

M6anfp
t
mpa(1− lossa)−

∑
a

M5anfp
t
mpa

+
∑
f

M1fnq
t
mpf −

∑
d

∑
f

M3dnx
t
mfpd

−
∑
i

∑
f

M2inzp
t
mfpi = 0 (αptmpn) (2j)

∀t, i, uppi −
∑
f,m

zptmfpi = 0 (ηptpi) (2k)

∀ i, uipi − uppi = 0 (ηpi) (2l)
∀t, m, d, i, f, zptmfpi, x

t
mfpd, ip

t
fp, q

t
mfp, uppi ≥ 0
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We denote by xtmfpd the total amount of gas brought in year t, season m to the market d by
all the players different from producer p.
The term ∑

t,m,f,i

δtηpi(zp
t
mfpi) +

∑
t,m,f,d

δt
(
ptmd(x

t
mfpd + xtmfpd)

)
xtmfpd

is the revenue, which is obtained from the sales on the long-term contracts sales to the indepen-
dent traders or directly from the retail markets.
The term ∑

t,m,p,a

δt((Tca + τ tm,a)fp
t
mpa)

is the transport and congestion costs charged by the pipeline operator to producer p. The dual
variable τ tma is associated with the pipeline capacity constraint through the arc a. It represents
the congestion price on the corresponding pipeline (see the transport operator optimization
problem for more explanation).
The term ∑

t,f

δtIpf ip
t
fp

is the investment cost in production at the different production fields.
The term ∑

t,f

δt

Pcf
∑
t′≤t

∑
m

qt
′
mfp, Rff

− P_cf
(∑
t′<t

∑
m

qt
′
mfp, Rff

)
is the actualized production cost. This term’s explanation is as follows:
The production cost (at field f) Pcf depends on two variables, the total quantity produced,
which will be denoted q and the natural gas resources Rff . The Golombek production cost
function we used is as follows:

∀q ∈ [0, Rff ), P cf (q,Rff ) = afq + bf
q2

2
− Rffcf

(
Rff − q
Rff

ln
(
Rff − q
Rff

)
+

q

Rff

)
(3)

or if written for the marginal production cost

∀q ∈ [0, Rff ),
dPcf
dq

= af + bfq + cf ln
(
Rff − q
Rff

)
(4)

In our model, the production cost function is dynamic. The gas volume available to be
extracted is dynamically reduced at each period, taking into account the exhaustivity of the
resource.
If at year 1, the production is q1 and at year 2 q2, the total cost is hence:

cost = Pcf (q1, RESf ) + δ(Pcf (q1 + q2, RESf )− Pcf (q1, RESf ))

Hence, to estimate that cost at year t, we need to calculate the production cost of the sum over
all the extracted volumes until year t and subtract the cost we have at year t− 1.

The explanation of the constraints is straightforward:
The constraint (2a) bounds each field’s production by its reserves.
The constraint (2b) bounds the seasonal quantities produced by each field’s production capacity,
taking explicitly into account the different dynamic investments, that decrease with time because
of the production depreciation factor.
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The constraint (2c) states that the total production must be greater than the sales (to the
long-term and spot markets). The constraints (2d) and (2e) can be rewritten as follows:

∀t, f |
∑
m

((−1)m
∑
p

qtmfp)| ≤ flf

This fixes a maximum spread between the off-peak/peak production at each field. (−1)m is equal
to 1 in the off-peak season and -1 in the peak season.
The consraint (2j) is a market-clearing condition at each node, regarding the flows from pro-
ducer p depending on whether this node is a production field, an independent trader location or
a demand market.
The constraint (2k) equates the sales of producer p for the long-term contracts to the contracted
volume uppi, each year.
The constraint (2l) describes the following: For each pair of producer/independent trader (p, i),
the gas quantity sold by p in the long-term contract market must be equal to the gas quantity
purchased by i. Therefore, this is a supply/demand equation in the long-term contracts mar-
ket. The associated dual variable ηpi is the corresponding contract unit selling/purchase price,
because we do not assume the existence of market power in the long-term contract trade. Using
this technique, it is possible to make the long-term contracts prices and volumes endogenous to
the description so that they become an output of the model.
The constraint (and the similar other ones) (2f) allows producer p to use only the fields he owns
(for production, investments, sales etc.). We recall that the incidence matrix O is such as Ofp = 1
if and only if producer p owns field f .

Independent trader i’s maximization program is given below. The corresponding
decision variables are zitmpi, y

t
mid, r

t
is, in

t
is and uipi.
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Max ∑
t,m,d

δt
(
ptmd(y

t
mid + ytmid)y

t
mid

)
−
∑
t,p,m

δt
(
ηpizi

t
mpi

)
−
∑
t,s

δt
(
Rcsr

t
is

)
−
∑
t,s

δt
(
(Ics +Wcs)in

t
is

)
−
∑
t,m,i,a

δt
(
Tca + τ tma

)
fitmia

such that:

∀t, m,
∑
p

zitmfpi −

(∑
d

ytmid + (−1)m
∑
s

intis

)
= 0 (ψtmi) (5a)

∀t, s, intis − rtis ≤ 0 (µtis) (5b)

∀t, m, n,
∑
a

M6anfi
t
mia(1− lossa)−

∑
a

M5anfi
t
mia

−
∑
d

M3dny
t
mid +

∑
p

M2inzi
t
mpi

− (−1)m
∑
s

M4snin
t
is = 0 (αitmin) (5c)

∀t, p, uipi −
∑
m

zitmpi = 0 (ηitpi) (5d)

∀ p, uipi − uppi = 0 (ηpi) (5e)

∀t, m, p, − zitmpi +minpi
∑
m

zitmpi ≤ 0 (υtmpi) (5f)

∀t, s,
∑
i

rtis −Kss −
∑

t′≤t−delays

ist
′
s ≤ 0 (βsts) (5g)

∀t, m, s, d, zitmpi, y
t
mid, r

t
is, in

t
is, uipi ≥ 0

The term ∑
t,m,d

δt
(
ptmd(y

t
mid + ytmid)y

t
mid

)
−
∑
t,p,m

δt
(
ηpizi

t
mpi

)
is the net profit.
The term ∑

t,s

δt
(
Rcsr

t
is

)
is the storage capacity reservation cost.
The term ∑

t,s

δt
(
(Ics +Wcs)in

t
is

)
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are the storage/withdrawal costs. 2

The term ∑
t,m,i,a

δt
(
Tca + τ tma

)
fitmia

is the transport and congestion costs charged by the pipeline operator from the independent
trader i.

As for the feasibility set, it is also easy to specify :
The constraint (5a) is a gas quantity balance for each trader. The term (−1)m is equal to 1 in
the off-peak season and -1 otherwise. An implicit assumption we use in our description is that
all the storage sites must be "empty" (regardless of the working gas quantitities) at the end of
each year.
The equation (5b) implies that each independent trader has to pay for a storage reservation
quantity, each year and at each storage site s, to be able to store his gas.
The constraint (5d) forces each trader to purchase the same quantity, in long-term contracts
from each producer and year.
The constraint (5e) is similar to the constraint (2l) of the producers’ optimization program.
For each pair of producer/independent trader (p, i), the gas quantity sold by p in the long-
term contract market must be equal to the gas quantity purchased by i. Therefore, this is a
supply/demand equation in the long-term contracts market. The associated dual variable ηpi is
the corresponding contract unit selling/purchase price, because we do not assume the existence
of market power in the long-term contract trade. Using this technique, it is possible to make the
long-term contracts prices and volumes endogenous to the description so that they become an
output of the model.
The constraint (5f) fixes a minimum percentage of the annual contracted volume minpi that has
to be exchanged between p and i each season of each year.
The constraint (5g) is a storage constraint expressed at each storage node, taking into account
the investments decided by the storage operator.

On the transportation side of our model, we will assume that the producers pay the transport
costs to bring natural gas from the production fields to the independent traders’ locations and
the end-use markets. The traders support the transport costs to store/withdraw gas or bring it
to the end-users for their sales.

The pipeline operator optimization (cost minimization) program is given below. The
corresponding decision variables are fptmpa, fitmia and ikta.

2There are no storage losses in the model. They can easily be taken into account by increasing the transporta-
tion losses of the arcs that start at the storage nodes.

15



Min ∑
t,m,a

δt
(
Tca + τ tma

)∑
p

fptmpa

+
∑
t,m,a

δt
(
Tca + τ tma

)∑
i

fitmia

+
∑
t,a

δtIkaik
t
a

such that:

∀t, m, a,
∑
p

fptmpa +
∑
i

fitmia −

Tka + ∑
t′≤t−delayi

ikt
′
a

 ≤ 0 (τ tma) (6a)

∀t, m, p, n,
∑
a

M6anfp
t
mpa(1− lossa)−

∑
a

M5anfp
t
mpa

+
∑
f

M1fnq
t
mpf −

∑
d

∑
f

M3dnx
t
mfpd

−
∑
i

∑
f

M2inzp
t
mfpi = 0 (αptmpn) (6b)

∀t, m, i, n,
∑
a

M6anfi
t
mia(1− lossa)−

∑
a

M5anfi
t
mia

−
∑
d

M3dny
t
mid +

∑
p

M2inzi
t
mpi

− (−1)m
∑
s

M4snin
t
is = 0 (αitmin) (6c)

∀t, m, a, p, i, fptmpa, fi
t
mia, ik

t
a ≥ 0

The objective function contains both the transport/congestion and invesment costs.
The congestion cost through arc a, τ tma, is the dual variable associated with the constraint (6a).
This constraint concerns the physical seasonal capacity of arc a, including the possible time-
dependent investments.
The other consraints are market-clearing conditions at each node, depending on whether this
node is a production field, an independent trader location, a demand market or a storage site
and depending on whether the transportation costs are supported by the producers or the inde-
pendent traders.
We consider both pipeline and LNG routes for transport. The liquefaction and regasification
costs are included in the transportation cost on the LNG arcs. We assume, in our representation
that the physical losses occur at the end nodes of the arcs.

The storage operator optimization (cost minimization) program is given below. The
corresponding decision variable is ists.
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Min∑
t,s

δtIssis
t
s

such that:

∀t, s,
∑
i

rtis −Kss −
∑

t′≤t−delays

ist
′
s ≤ 0 (βsts) (7a)

∀t, s, ists ≥ 0

The storage operator only controls the different investments that dynamically increase the
storage capacity of each storage node. The incentive this player has to invest is due to the
constraint he must satisfy: the capacity available at each storage site must be sufficient to meet
the volumes the independent traders have to store each year in the off-peak season.

If we take a closer look at the optimization program of a producer, we will notice that his
feasibility set depends on the decision variables of the independent traders. Also, the feasibility
set of any independent trader’s optimization program depends on the producers decision vari-
ables. The situation is similar for the pipeline and storage operators. This particularity makes
our formulation (the KKT conditions) a Generalized Nash-Cournot problem. Similarly, the
Gerneralized Nash-Cournot problem can also be formulated as a Quasi Variational Inequality
problem (QVI). In order to solve our problem, we look for the particular solution that makes our
problem a VI formulation [18]. More details about the VI solution search are given in Section 2.6.

When the KKT conditions are written, we obtain the Mixed Complementarity Problem given
in Section 2.7.

2.5 The concavity of the players’ objective functions

This section demonstrates the concavity of all the players’ objective functions.
We will demonstrate that the production cost is convex with respect to the quantity produced.
The storage/withdrawal/investments costs are convex functions because they are linear.

Let’s consider a producer p. First we demonstrate the convexity of the Golombek production
cost function. We consider a production field f . To simplify the notation, let us denote by q
the produced volume (a variable) and by Rff the reserve (a constant). We recall that the cost
function Pcf is as follows:

d Pcf
d q : [0, Rff ) −→ R+

q −→ af + bfq + cf ln
(
Rff−q
Rff

)
where cf ≤ 0 and bf ≥ 0.
Pcf is a C2([0, Rff )) function (twice continuously differentiable) and we have :

∀q ∈ [0, Rff )
d2Pcf
d2q

= bf −
cf

Rff − q
≥ 0

Thus, Pcf is convex.
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Producer p’s objective function is:
+
∑

t,m,f,i δ
tηpi(zp

t
mfpi)

+
∑

t,m,f,d δ
t
(
ptmd(x

t
mfpd + xtmfpd)

)
xtmfpd

−
∑

t,f δ
t
(
Pcf

(∑
t′≤t

∑
m q

t′
mfp, Rff

)
− Pcf

(∑
t′<t

∑
m q

t′
mfp, Rff

))
−
∑

t,f δ
tIpf ip

t
fp

−
∑

t,m,p,a δ
t((Tca + τ tma)fp

t
mpa)

As mentioned before, the inverse demand function has been linearized. Let’s write the natural
gas price in market d as follows:

ptmd = atmd − btmd(xtmfpd + xtmfpd)

where btmd > 0. The function
∑

t,m,f,d δ
t
(
ptmd(x

t
mfpd + xtmfpd)

)
xtmfpd is therefore a concave

function of the variables xtmfpd. Indeed the Hessian matrix Ht
md associated with the spot market

profit is diagonal and such that the diagonal terms are Ht
md = −2btmd < 0. Hence, the Hessian

matrix is negative definite.

Let us consider the global cost function GP :
qtmfp −→ GP (qtmfp) = −

∑
t,f δ

t
(
Pcf

(∑
t′≤t

∑
m q

t′
mfp, Rff

)
− Pcf

(∑
t′<t

∑
m q

t′
mfp, Rff

))
.

And let’s demonstrate that GP is concave. Let’s consider two variable vectors q1tmd and q2tmd
and λ ∈ [0, 1].

GP (λq1tmd + (1− λ)q2tmd)
=

−
∑

t,f δ
t
(
Pcf

(∑
t′≤t

∑
m(λq1

t′
md + (1− λ)q2t′md), Rff

))
+
∑

t,f δ
t
(
Pcf

(∑
t′<t

∑
m(λq1

t′
md + (1− λ)q2t′md), Rff

))
=

−
∑

f

∑Num
t=0 δt

(
Pcf

(∑
t′≤t

∑
m(λq1

t′
md + (1− λ)q2t′md), Rff

))
+
∑

f

∑Num−1
t=0 δt+1

(
Pcf

(∑
t′≤t

∑
m(λq1

t′
md + (1− λ)q2t′md), Rff

))
=

−
∑

f

∑Num−1
t=0 (δt − δt+1)

(
Pcf

(∑
t′≤t

∑
m(λq1

t′
md + (1− λ)q2t′md), Rff

))
−
∑

f δ
Num

(
Pcf

(∑
t′≤Num

∑
m(λq1

t′
md + (1− λ)q2t′md), Rff

))
=

−
∑

f

∑Num−1
t=0 δt(1− δ)

(
Pcf

(∑
t′≤t

∑
m(λq1

t′
md + (1− λ)q2t′md), Rff

))
−
∑

f δ
Num

(
Pcf

(∑
t′≤Num

∑
m(λq1

t′
md + (1− λ)q2t′md), Rff

))
Since 0 ≤ δ ≤ 1 and Pcf is convex, we can write:
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−
∑

f

∑Num−1
t=0 δt(1− δ)

(
Pcf

(∑
t′≤t

∑
m(λq1

t′
md + (1− λ)q2t′md), Rff

))
−
∑

f δ
Num

(
Pcf

(∑
t′≤Num

∑
m(λq1

t′
md + (1− λ)q2t′md), Rff

))
≥
−λ
∑

f

∑Num−1
t=0 δt(1− δ)

(
Pcf

(∑
t′≤t

∑
m q1

t′
md, Rff

))
−(1− λ)

∑
f

∑Num−1
t=0 δt(1− δ)

(
Pcf

(∑
t′≤t

∑
m q2

t′
md, Rff

))
−λ
∑

f δ
Num

(
Pcf

(∑
t′≤Num

∑
m q1

t′
md, Rff

))
−(1− λ)

∑
f δ

Num
(
Pcf

(∑
t′≤Num

∑
m q2

t′
md, Rff

))
=
λGP (q1tmd) + (1− λ)GP (q2tmd)

Hence, the cost function is concave. The rest of the profit is made of linear functions of the
decision variables. The concavity of the producers objective function is thus demonstrated.

The independent traders’ objective function can be demonstrated in a similar way. Like for
the producers, the spot maket benefit is also concave.

The pipeline and storage operators objective functions are concave because they are linear.
The feasibility sets are all convex due to linearity of the constraint functions.

2.6 The (Quasi)-Variational Inequality and Generalized Nash-Cournot games

In this section, we recall Harker’s result [18] in order to understand how to theoretically solve a
Generalized Nash-Cournot problem.

A standard Nash-Cournot problem is a set of optimization programs where some of the players
can influence other players’ payoff via the objective functions. In a Generalized Nash-Cournot
formulation, some players can also change the feasibility sets of other players, via their decision
variables. In our particular model, if we consider an independent trader i, the constraint

∀ p, i, uipi = uppi

contains the producers decision variables uppi. These decision variables influence trader i’s fea-
sibility set. This influence on the feasible region of one player by another is also the case for the
pipeline operator. Indeed, each node’s market-clearing condition mixes the decision variables of
the producers, the independent traders and the pipeline operator. The storage operator feasibil-
ity set contains constraints that mix its decision variables with those of the independent traders,
at each storage site.

A VI (Variational Inequality) problem can be formulated as follows: given a set K ∈ Rn and
a mapping F : K −→ Rn, find x∗ ∈ K s.t.

∀y ∈ K, F (x∗)t(y − x∗) ≥ 0

It is straightforward that a standard Nash-Cournot problem can be expressed as a VI formu-
lation if the objective functions are differentiable (is suffices to write the necessary and sufficient
conditions on the gradient of the objective functions that characterize the optimum).

A QVI (Quasi-Variational Inequality) problem adds mixed constraints [10]. Given n point-
to-set mappings Ki : Rn −→ R, i ∈ {1, 2...n} and F : Rn −→ Rn, find x∗ ∈ Rn s.t. ∀i ∈
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{1, 2...n} x∗i ∈ Ki(x
∗) and

∀y ∈ Rn s.t. ∀i ∈ {1, 2...n} yi ∈ Ki(x
∗), F (x∗)t(y − x∗) ≥ 0

A generalized Nash-Cournot problem can be expressed as a QVI formulation. Unlike VI
problems, a QVI formulation often has an infinite set of equilibria. In some particular cases, a
QVI problem can be slightly changed into a VI formulation. This is possible, in particular if the
QVI is issued from a Generalized Nash-Cournot problem, which is our case. The idea is quite
simple: we want to make the mappings Ki independent of the variables xi. To do so, we make all
the constraints that mix different players decision variables common to all these players. From
the KKT conditions point of view, Harker [18] demonstrated that the "VI solution" is obtained
by giving the same dual variables to the common constraints. As an example, in our problem,
this leads to the fact that the producers and independent traders, see the same dual variables
ηpi. Economically speaking, this means that they have the same appreciation of the long-term
contracts prices.

Using this technique, we make sure we end up with a VI solution [18].

2.7 The KKT conditions and MCP formulation

This section presents the KKT conditions derived from our model. Once the KKT conditions
written, we get the Mixed Complementarity Problem given below.
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The producers KKT conditions

∀t, m, f, p, i, 0 ≤ zptmfpi ⊥ δtηpi − γtmfp − ε2tmfpi − ηptpi ≤ 0 (8a)

−
∑
n

M2inαp
t
mpn

∀t, m, f, p, d, 0 ≤ xtmfpd ⊥ δtptmd(x
t
mfpd + xtmfpd) ≤ 0 (8b)

+ δt
∂ptmd
∂xtmfpd

(xtmfpd + xtmfpd)x
t
mfpd

− γtmfp − ε1tmfpd −
∑
n

M3dnαp
t
mpn

∀t, m, f, p, 0 ≤ qtmfp ⊥ −
∑
t′≥t

δt
′ ∂Pcf
∂q

(
∑
t′′≤t′

∑
m

qt
′′
mfp, Rff ) ≤ 0 (8c)

+
∑
t′>t

δt
′ ∂Pcf
∂q

(
∑
t′′<t′

∑
m

qt
′′
mfp, Rff )

−
∑
t′≥t

φt
′
f − χtmf + γtmfp

− (−1)m(ϑ1tf − ϑ2tf )− ε3tmfp
+
∑
n

M1fnαp
t
mpn

∀t, f, p, 0 ≤ iptfp ⊥ − δtIpf − ε4tfp ≤ 0 (8d)

+
∑
m

∑
t′≥t+delayp

χt
′
mf (1− depf )t

′−t

∀t, p, i, 0 ≤ uppi ⊥
∑
t

ηptpi − ηpi ≤ 0 (8e)

∀t, f, 0 ≤ φtf ⊥
∑
p

∑
t′≤t

∑
m

qt
′
mfp −Rff ≤ 0 (8f)

∀t, m, f, 0 ≤ χtmf ⊥
∑
p

qtmfp −Kff (1− depf )t ≤ 0 (8g)

−
∑
p

∑
t′≤t−delayp

ipt
′
fp(1− depf )t−t

′

∀t, m, f, p, 0 ≤ γtmfp ⊥ − qtmfp +
∑
i

zptmfpi +
∑
d

xtmfpd ≤ 0 (8h)

∀t, f, 0 ≤ ϑ1tf ⊥
∑
m

∑
p

(−1)mqtmfp − flf ≤ 0 (8i)
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∀t, f, 0 ≤ ϑ2tf ⊥ −
∑
m

∑
p

(−1)mqtmfp − flf ≤ 0 (9a)

∀t, f,m, p, d, 0 ≤ ε1tmfpd ⊥ xtmfpd −OfpH ≤ 0 (9b)

∀t, m, f, p, i, 0 ≤ ε2tmfpi ⊥ zptmfpi −OfpH ≤ 0 (9c)

∀t, m, f, p, 0 ≤ ε3tmfp ⊥ qtmfp −OfpH ≤ 0 (9d)

∀t, f, p, 0 ≤ ε4tfp ⊥ iptfp −OfpH ≤ 0 (9e)

∀t, m, p, n, free αptmpn
∑
a

M6(a, n)fp
t
mpa(1− lossa) = 0 (9f)

−
∑
a

M5anfp
t
mpa +

∑
f

M1fnq
t
mpf

−
∑
d

∑
f

M3dnx
t
mfpd

−
∑
i

∑
f

M2inzp
t
mfpi

∀t, p, i, free ηptpi uppi −
∑
f,m

zptmfpi = 0 (9g)

∀ p, i, free ηpi uipi − uppi = 0 (9h)

The independent traders’ KKT conditions

∀t, m, p, i, 0 ≤ zitmpi ⊥ − δtηpi − ηitpi ≤ 0 (10a)

+ ψtmi

+
∑
n

M2inαi
t
min

+ (1−minpi)υtmpi

∀t, m, i, d, 0 ≤ ytmid ⊥ δtptmd(y
t
mfpd + ytmfpd) ≤ 0 (10b)

δt
∂ptmd
∂ytmid

(ytmfpd + ytmfpd)y
t
mid

− ψtmi −
∑
n

M3dnαi
t
min

∀t, i, s, 0 ≤ rtis ⊥ − δtRcs + µtis − βsts ≤ 0 (10c)
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∀t, i, s, 0 ≤ intis ⊥ − δt(Ics +Wcs) ≤ 0 (11a)

− µtis −
∑
m

(−1)mψtmi

−
∑
n

M4snαi
t
min(−1)m

∀t, p, i, 0 ≤ uipi ⊥
∑
t

ηitpi + ηpi ≤ 0 (11b)

∀t, m, i, free ψtmi
∑
p

zitmpi −
∑
d

ytmid + (−1)m
∑
s

intis = 0 (11c)

∀t, i, s, 0 ≤ µtis ⊥ intis − rtis ≤ 0 (11d)

∀t, m, i, n, free αitmin
∑
a

M6anfi
t
mia(1− lossa) = 0 (11e)

−
∑
a

M5anfi
t
mia −

∑
d

M3dny
t
mid

+
∑
p

M2inzi
t
mpi

− (−1)m
∑
s

M4snin
t
is

∀t, p, i, free ηitpi uipi −
∑
m

zitmpi = 0 (11f)

∀ p, i, free ηpi uipi − uppi = 0 (11g)

∀t, m, p, i, 0 ≤ υtmpi − zitmpi +minpi
∑
m

zitmpi ≤ 0 (11h)

∀t, s, 0 ≤ βsts ⊥
∑
i

rtis −Kss −
∑

t′≤t−delays

ist
′
s ≤ 0 (11i)

The pipeline operator KKT conditions

∀t, m, p, a, 0 ≤ fptmpa ⊥ − δt(Tca + τ tma)− τ tma ≤ 0 (12a)

+
∑
n

M6anαp
t
mpn(1− lossa)

−
∑
n

M5anαp
t
mpn
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∀t, m, i, a, 0 ≤ fitmia ⊥ − δt(Tca + τ tma)− τ tma ≤ 0 (13a)

+
∑
n

M6anαi
t
min(1− lossa)

−
∑
n

M5anαi
t
min

∀t, a, 0 ≤ ikta ⊥ − δtIka ≤ 0 (13b)

+
∑

t′≥t+delayi

τ t
′
ma

∀t, m, a, 0 ≤ τ tma ⊥
∑
p

fptmpa +
∑
i

fitmia ≤ 0 (13c)

− Tka −
∑

t′≤t−delayi

ikta

∀t, m, p, n, free αptmpn
∑
a

M6(a, n)fp
t
mpa(1− lossa) = 0 (13d)

−
∑
a

M5anfp
t
mpa +

∑
f

M1fnq
t
mpf

−
∑
d

∑
f

M3dnx
t
mfpd

−
∑
i

∑
f

M2inzp
t
mfpi

∀t, m, i, n, free αitmin
∑
a

M6anfi
t
mia(1− lossa) = 0 (13e)

−
∑
a

M5anfi
t
mia −

∑
d

M3dny
t
mid

+
∑
p

M2inzi
t
mpi

− (−1)m
∑
s

M4snin
t
is

The storage operator KKT conditions

∀t, s, 0 ≤ ists ⊥ − δtIss +
∑

t′≥t+delays

βst
′
s ≤ 0 (14a)

∀t, s, 0 ≤ βsts ⊥
∑
i

rtis −Kss −
∑

t′≤t−delays

ist
′
s ≤ 0 (14b)

3 The European natural gas markets model

This section puts the model at work and presents our numerical results.
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3.1 The representation

The model we presented in Section 2.4 has been used in order to study the North-Western
European natural gas trade. The following array summarizes the representation we have studied.

Producers Fields Consuming markets independent traders
Russia Russiaf France Francetr
Algeria Algeriaf Germany Germanytr
Norway Norwayf The Netherlands The Netherlandstr
The Nethherlandsf NLf UK UKtr

UK UKf Belgium Belgiumtr

Storage sites Seasons Time
Francest off-peak 2000− 2040

Germanyst peak
The Netherlandsst
UKst

Belgiumst

We aggregate all the production fields of each producer into one production node. We assume
that each consuming market is associated with one independent local trader (indexed by tr). As
an example, Francetr would be GDF-SUEZ and Germanytr would be E-On Ruhrgas. All the
storage sites are also aggregated so that there is one storage node per consuming country. As
for the transport, the different gas routes given in Figure 3 were considered.
The local production in the different consuming countries is also taken into consideration (the
imports from non-represented producers, which are small, are also considered). We assume that
these locally consumed volumes are exogenous to the model.

3.2 The calibration

The calibration process has been carried out in order to best meet:

• the global natural gas consumption,

• the industrial sector gas price and

• the volumes produced by each gas producer,

between 2000 and 2004 (the first time period).

The model has been solved using the solver PATH [11] from GAMS. In order to shorten the
running time, we used a five-year time-step resolution. We chose five years because it is the
typical length of time needed to construct investments in production, infrastructure or storage.
Also, the demand function has been linearized.

The data for the market prices, consumed volumes and imports is the publicly available set
from IEA [23]. We define a new variable exchtmpd that represents the exported volume from
producer p to market d. More precisely :

∀t, m, p, d, exchtmpd =
∑
i

Bid zp
t
mpi + xtmpd
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Figure 3:
The North-Western European natural gas routes, production and storage sites.

The matrix B is such that Bid = 1 if the independent trader i is located in market d (e.g.,
GDF-SUEZ in France, E-On Ruhrgas in Germany) and Bid = 0 otherwise. Hence, one can notice
that the exchanged volumes include both the spot and long-term contract trades.

The calibration elements we used are the inverse demand function parameters αtmd, γ
t
md,

pctmd and βtmd. The idea is that the system dynamics [2] model is run in order to calculate all
the inverse demand function parameters, for all the markets and at each year and season of
our study. The calibration technique slightly adjusts these values to make the model correctly
describe the historical data (between 2000 and 2004).

In order to calibrate the produced volumes properly, we introduced security of supply param-
eters that link each pair of producer/consuming countries (p, d). A security of supply measure
forces each country not to import from any producer, more than a fixed percentage (denoted by
SSP ) of the overall imports.This property can be rewritten as follows:

∀t, m, p, d, exchtmpd ≤ SSPpd
∑
p

exchtmpd

The security of supply parameters are also an output of the calibration process. As mentioned
before, the calibration concerned only the first time period.
The calibration tolerates a maximum error of 5% for the prices and consumed quantities and
10% for the imported/exported volumes. The tolerated error is higher for the exchanged volumes
because they depend on the exports decided by the producers for all the targeted consumers,
even those that are not in the scope of the model. As an example, the exported volumes from
Russia to CIS (CEI) countries are exogenous to our model.
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3.3 Numerical results

In order to estimate the demand function parameters, our model requests exogenous inputs: the
global energy demand and the evolution of the oil and coal prices. For that purpose, we used
a scenario provided by the European Commision [9]. The annual gross consumption and prices
growth per year we used are given in the following chart (starting from 2000) :

annual growth Total gross consumption (in %) Oil price (in %) Coal price (in %)

France 0.46 3.71 2.61

Germany 0.06 3.71 2.61

United Kingdom 0.02 3.71 2.61

Belgium 0.06 3.71 2.61

TheNetherlands 0.11 3.71 2.61

Figure 4 gives the evolution of the natural gas consumption between 2000 and 2030 provided
by our model for the countries represented. The consumption is given in Bcm/year.

The average annual growth between 2000 and 2030 is given in the following chart :
Country annual consumtpion growth (in %)

France 0.61

Germany 0.23

UK −1.35
Belgium 0.23

Netherlands −0.94

According to our simulation, France shows the highest annual consumption growth, averag-
ing 0,61%, between 2005 and 2030. Both the UK and the Netherlands experience a significant
decrease in their natural gas consumption, as their domestic supplies are replaced by more expen-
sive foreign imports. This effect is magnified in our model by the fact that only existing reserves
are taken into account, which are depleted relatively quickly due to high installed capacities.
The consumption of all the countries shown flattens out or decreases in 2030, compared to 2000,
despite the increase of the global gross demand. This is mainly due to the fact that competition
in the upstream becomes less and less important with time. Indeed, in 2025, the continental
Europe gas production (the UK and the Netherlands) is expected to be around 25 Bcm. This
will increase the exercice of market power and the consumption growth will therefore be reduced.

Figure 5 shows the evolution of the natural gas prices, in the industrial sector, for the repre-
sented countries. We recall that the industrial sector prices are taken as a proxy for natural gas
prices.

The average annual growth between 2000 and 2030 is given in the following chart:

Country annual price growth (in %)

France 2.47

Germany 2.19

UK 1.28

Belgium 1.92

Netherlands 2.14

As expected, the natural gas prices increase continuously in all the countries. The prices
values are driven, as a resut of the Nash-Cournot interaction by the combination of two effects:
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Figure 4:
The North-Western European natural gas consumption between 2005 and 2030.
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Figure 5:
The North-Western European natural gas prices in the industrial sector between 2000 and 2030.
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the global energy demand and the competition between fuels (see equation 1). Since the global
energy demand and the coal and oil prices increase with time, they force the gas price up.
This combination explains why the natural gas price annual growth in all the countries is less
important than the growth in both oil and coal. Indeed, this is due to the fact that the global
energy consumption does not increase as quickly as the coal and oil prices with time.
Now it is interesting to study the evolution of the production over time. Figure 6 gives the
evolution of the producing countries sales between 2000 and 2040, in Bcm/year.

Figure 6:
The natural gas sales between 2000 and 2040.

The production in continental Europe is expected to greatly decrease in the forthcoming
decades. The Norwegian production is expected to increase until 2012 before starting to de-
crease. The Dutch decrease is smooth (-4.5 % per year between 2000 and 2020) whereas the UK
one is very sharp. The model indicates that the United Kingdom will use up more than 75% of
its natural gas reserves (starting from 2000) until 2015. This may seem surprising but can be
understood by the fact that we take into account only the proven reserves in 2000 [4]. Thus, we
do not consider the reserves discoveries that may occur till 2045.
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On the other hand, the Russian and Algerian shares in the European natural gas consump-
tion is expected to grow in the coming decades: in 2020, the foreign imports will represent 47%
of the North-Western European consumption.

In order to test the strength of the model, we compare its output versus historical values.
For that purpose, we consider the consumption and prices in the European countries between
2005 and 2010 (second time-step) and compare them to what actually happened in that period.
Let us recall that the second time-step has not been used in the calibration. Figure 7 gives the
natural gas consumption between 2005 and 2010 in Bcm/year and prices in $/cm in the countries
represented. The left bars represent the model’s output whereas the right bars represent the real
historical data.

Figure 7:
Comparison between the model’s output and historical data.

The average model estimation errors are 2.2% for the consumption and 3.5% for the prices.
They are in the same range as the ones tolerated when calibrating the model (period 2000-2005).

Figure 8 gives the evolution of the North-Western European natural gas dependence on foreign
imports (those considered in the model). The dependence is the ratio between the foreign exports
to North-Western Europe and the domestic consumption 3.
The natural gas dependence is expected to reach 70% around 2030, which will bring about
important security of supply concerns [1]. However, these conclusions are to be considered
cautiously because they are based on strong assumptions. Indeed, in our study, we assume that
no more natural gas reserves will be found in the future and no shale gas will be produced in
Europe. 4

3The Norwegian sales are not taken into account in the foreign supplies, for security of supply reasons.
4shale gas production is expected to be negligeable in Europe, due to environmental concerns for instance. As

of now, few credible assumptions exist concerning the development of European domestic shale reserves [5].
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dependence =
foreign exports

total consumption
(15)

Figure 8:
The North-Western European natural gas dependence over time.

The purpose of the next comparison is to show the effects of the our fuel substitution-based
demand function. To that end, we consider an alternative linear demand function of the following
form:

qt = at − bpt (16)

where the slope b should remain constant over time and the interceipt at changes as a function
of the global energy demand. In our study, we made at evolve with the global energy demand
annual growth. The slope b is a result of the calibration process. This description of the markets
will be refered to as the standard model whereas the model we proposed in this article will be
refered to as the GaMMES model.

Figure 9 provides the consumption and prices levels for both models considered.

We notice that the standard model provides a lower consumption than the GaMMES results.
The average difference in consumption is 13%. The standard model provides lower prices than
the GaMMES results. The average difference between the two models is 23% which is quite large.

Now, let’s compare between the results provided by the GaMMES model, the standard model
and some official forecast. For that purpose, we choose the forecast of the European Commission
[9].

Figure 10 shows the evolution of the global European energy consumption between 2000 and
2030 and the average European price, forecasted in three scenarios. Ths first one is issued from
the European Commission report (baseline scenario) [9]. The second one is our model forecast
and the third one is the standard model forecast.
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Figure 9:
Comparison between the standard and the GaMMES model: consumption and prices.

Figure 10:
The European commission, the GaMMES model and the standard model forecasts.
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Comparing the results of both the GaMMES model and the standard model with the 2007
European Commission forecasts [9] gives strong support to the need to take into account fuel
substitution, especially in the long run. The standard model output shows a very fast decrease of
natural gas consumption in the long run. This seems at odds with the perspective of the market,
since as global primary Energy consumption is exogenous, the remaining energy consumption
has to be met thanks to oil and coal. This view clearly contradicts the global envolution of the
different energy shares in the recent past as well as the strong support for cleaner fuels given
by the european policy framework. On the contrary, the GaMMES model output gives a better
outcome. The demand for gas slowly increases in the medium term, due to both higher energy
gross domestic consumption and a higher share for natural gas in the energy mix [26]. The trend
is compensated in the long run by the increased exercice of market power. The 2010 kink is
mostly explained by the quick depletion of domestic reserves.

These previous results and those of figure 7 show that consummed quantities provided by the
model are in line of the European Commission forecasts. This gives confidence in the GaMMES
results, for the European Commission forecasts are subject to countries review and acceptance.
Regarding the prices, GaMMES is closer to the European Commission scenario than the stan-
dard model, even if both of these scenarios underestimates the prices.

In conclusion, compared to a standard description, the GaMMES model captures correctly
the evolution of the natural gas prices and consumption. It is necessary to take into consid-
eration the fuel substitution in the natural gas markets modeling because they allow a better
understanding of the consumers’ behavior.

Now, it may be interesting to take advantage of the energy substitution description allowed
by the GaMMES model in order to study the dependence, in a particular period, of the natural
gas price in the different countries over the oil and coal prices. Starting from the baseline scenario
of our model, we vary the oil and coal prices in the third period (2010-2014) and run the model
each time in order to study the effect of the substitution on the natural gas prices. The coal and
oil prices change the parameter pc of the inverse demand function. Figure 11 gives the evolution
of the (average) European natural gas price in 2015 over the oil and coal prices. We make these
latter evolve linearly, in a similar way (starting from the baseline scenario: (-40%, -20%, +10%,
+30%, +50%)). For more clarity in the presentation, we prefered showing the evolution of the
natural gas price over the competition price pc. 5

Obviously, this evolution is an increasing function of the substitution fuels’ prices. The higher
the oil and coal prices are, the greater the natural gas demand will be and therefore, the higher
the natural gas price will be. This property concerns also the long-term contracts prices between
the producers and the independent traders ηpi. Hence, our model allows us to capture part of
the indexation (on coal and oil prices) effects via the substitution in the inverse demand function.

4 Conclusions

This paper presents a Generalized Nash-Cournot model in order to describe the natural gas
markets evolution. The demand representation is rich because it takes into account the possible
energy substitution that can be made between oil, coal and natural gas. This appears in the
introduction of a competition price, in the demand function. The exhaustibility of the resourse

5We recall that pc represents an aggregated price of the coal and oil prices. It is an output of our system
dynamics model used to define de inverse demand function, see Section 2.3.
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Figure 11:
Evolution of the natural gas price over the competition price in 2015.

is taken care of by the use of Golombek production cost functions.

The long-term contract prices and volumes are endogenously taken into account via dual
variables. This aspect makes our formulation a Generalized Nash-Cournot model, or similarly a
QVI formulation. In order to solve it, we derived the corresponding VI formulation.

The model is dynamic (2000-2040) and has been solved using the solver PATH with GAMS.
After the calibration process, it has been applied to understand the European natural gas trade
between 2000 and 2040 in terms of consumption, prices, production and natural gas dependence.
The consumption and prices forecast carried out are consistent with those found in the litera-
ture. A study of the evolution of the natural gas dependence has been carried out. It shows
that North-Western Europe will become more and more dependent on the foreign supplies in the
future.

Our results have been compared with other forecasts: one provided by the European Commis-
sion and another one issued from a standard model where the energy substitution is not present.
The results show that it is important to capture, while studying the natural gas demand function,
the possible energy substitution regarding other possible usable fuels market prices.

In order to illustrate the possible use of fuel substitution, we studied the evolution of the
natural gas price over the coal and oil prices. The coal-oil prices indexation of the natural gas
price in the spot markets or in the long-term contracts can be understood thanks to these studies.

Future work could address: stochasticity when representing the impact of risk on the market
or the seasonality of the demand, more policy focused analysises such as the impact of environ-
mental policies on the gas trade evolution and the development of majors infrastructures toward
Europe.
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