167 research outputs found

    20th century behaviour of Drygalski Ice Tongue, Ross Sea, Antarctica

    Get PDF
    Drygalski Ice Tongue is the floating seaward extension of David Glacier, a large outlet glacier draining from Talos and Circe Domes of the East Antarctic ice sheet. Several explorers mapped and described Drygalski Ice Tongue in the early years of the 20th century and, although this information does not allow detailed interpretation of ice-tongue behaviour, it is clear that from 1900–12 it was a significant feature extending 65—75 km from the coast. More detailed information has been compiled from aerial photographs and satellite images. In December 1956, the ice tongue was about 110 km long. By December 1957, a major calving event had occurred and the outer 40 km of the ice tongue had broken away. This is the only major 20th century calving event identified, and it may have occurred during a violent storm that affected the Ross Sea area in mid-June 1957. By 1960, further minor ice loss had occurred but, since that time, Drygalski Ice Tongue has maintained the same shape. In January 1993, the ice tongue was 95.8 km long and at its terminus was flowing at 880 900 m a-1. Drygalski Ice Tongue is an important regulator of the size of the Terra Nova Bay polynya. The average size of the Polynya has varied from nearly 2000 km2, in 1956, to 650 km2 in 1957. This has a. significant impact on sea-ice production in the Ross Sea. In 1956, about 115 km3,) of sea ice would have been produced, sufficient to cover 30%of the Ross Sea area with a 1 m thickness of sea ice

    A possible role for selenoprotein glutathione peroxidase (GPx1) and thioredoxin reductases (TrxR1) in thyroid cancer. Our experience in thyroid surgery

    Get PDF
    Abstract Background: Oxidative stress is responsible for some alterations in the chemical structure and, consequently, in the function of proteins, lipids, and DNA. Recent studies have linked oxidative stress to cancers, particularly thyroid cancer, but the mechanisms remain unclear. Here, we further characterize the role of oxidative stress in thyroid cancer by analyzing the expression of two selenium antioxidant molecules, glutathione peroxidase (GPx1) and thioredoxin reductase (TrxR1) in thyroid cancer cells. Methods: Samples of both healthy thyroid tissue and thyroid tumor were taken for analysis after total thyroidectomy. The expression of GPx1 and TrxR1 was revealed by Western blot analysis and quantified by densitometric analyses, while the evaluation of free radicals was performed by Electron Paramagnetic Resonance (EPR)-spin trapping technique. Results: Our results show a decrease in the expression of GPx1 and TrxR1 (− 45.7 and − 43.2% respectively, p < 0.01) in the thyroid cancer cells compared to the healthy cells. In addition, the EPR technique shows an increase of free radicals in tumor tissue, significantly higher than that found in healthy thyroid tissue (+ 116.3%, p < 0.01). Conclusions: Our findings underscore the relationship between thyroid cancer and oxidative stress, showing the imbalance of the oxidant/antioxidant system in thyroid cancer tissue. These results suggest that either the inability to produce adequate antioxidant defense or an increased consumption of antioxidants, due to the hyper-production of free radicals, may play a crucial role in thyroid cancer. Keywords: Oxidative stress, Thyroid cancer, Glutathione peroxidase (GPx1), Thioredoxin reductases (TrxR1), Selenium enzyme

    Snow dunes and glazed surfaces in Antarctica: new field and remote-sensing data

    Get PDF
    AbstractAs part of the International Trans-Antarctic Scientific Expedition project, the Italian Antarctic Programme undertook two traverses from the Terra Nova station to Talos Dome and to Dome C. Along the traverses, the party carried out several tasks (drilling, glaciological and geophysical exploration). The difference in spectral response between glazed surfaces and snow makes it simple to identify these areas on visible/near-infrared satellite images. Integration of field observation and remotely sensed data allows the description of different mega-morphologic features: wide glazed surfaces, sastrugi glazed surface fields, transverse dunes and megadunes. Topography global positioning system, ground penetrating radar and detailed snow-surface surveys have been carried out, providing new information about the formation and evolution of mega-morphologic features. The extensive presence, (up to 30%) of glazed surface caused by a long hiatus in accumulation, with an accumulation rate of nil or slightly negative, has a significant impact on the surface mass balance of a wide area of the interior part of East Antarctica. The aeolian processes creating these features have important implications for the selection of optimum sites for ice coring, because orographic variations of even a few metres per kilometre have a significant impact on the snow-accumulation process. Remote-sensing surveys of aeolian macro-morphology provide a proven, high-quality method for detailed mapping of the interior of the ice sheet's prevalent wind direction and could provide a relative indication of wind intensity

    Geothermal flux and basal melt rate in the Dome C region inferred from radar reflectivity and heat modelling

    Get PDF
    Abstract. Basal melt rate is the most important physical quantity to be evaluated when looking for an old-ice drilling site, and it depends to a great extent on the geothermal flux (GF), which is poorly known under the East Antarctic ice sheet. Given that wet bedrock has higher reflectivity than dry bedrock, the wetness of the ice–bed interface can be assessed using radar echoes from the bedrock. But, since basal conditions depend on heat transfer forced by climate but lagged by the thick ice, the basal ice may currently be frozen whereas in the past it was generally melting. For that reason, the risk of bias between present and past conditions has to be evaluated. The objective of this study is to assess which locations in the Dome C area could have been protected from basal melting at any time in the past, which requires evaluating GF. We used an inverse approach to retrieve GF from radar-inferred distribution of wet and dry beds. A 1-D heat model is run over the last 800 ka to constrain the value of GF by assessing a critical ice thickness, i.e. the minimum ice thickness that would allow the present local distribution of basal melting. A regional map of the GF was then inferred over a 80 km  ×  130 km area, with a N–S gradient and with values ranging from 48 to 60 mW m−2. The forward model was then emulated by a polynomial function to compute a time-averaged value of the spatially variable basal melt rate over the region. Three main subregions appear to be free of basal melting, two because of a thin overlying ice and one, north of Dome C, because of a low GF

    Climate variability along latitudinal and longitudinal transects in East Antarctica

    Get PDF
    AbstractIn the framework of the International Trans-Antarctic Scientific Expedition (ITASE) programme, France and Italy carried out a traverse along one west–east and two north–south transects in East Antarctica from November 2001 to January 2002. Eighteen shallow snow–firn cores were drilled, and surface snow samples were collected every 5km along the traverse. Firn temperatures were measured in boreholes down to 30 m. The cores were analyzed for β radioactivity to obtain snow accumulation-rate data. The surface snow samples were analyzed for δ18O to correlate isotopic values with borehole temperatures. Multiple regression analysis shows a global near-dry-adiabatic lapse rate and a latitudinal lapse rate of 1.05˚C(˚ lat. S)–1, in the Dome C drainage area. Analysis of firn temperatures reveals a super-adiabatic lapse rate along the ice divide between Talos Dome and the Southern Ocean coast, and in some sectors along the ice divide between the Astrolabe Basin and D59. Snow accumulation rates and firn temperatures show warmer temperatures and higher accumulation values close to the ice divides extending from Talos Dome and Dome C to the Southern Ocean. The spatial pattern of data is linked with a katabatic-wind-source basin and moisture-source region

    Volcanic Fluxes Over the Last Millennium as Recorded in the Gv7 Ice Core (Northern Victoria Land, Antarctica)

    Get PDF
    Major explosive volcanic eruptions may significantly alter the global atmosphere for about 2-3 years. During that period, volcanic products (mainly H2SO4) with high residence time, stored in the stratosphere or, for shorter times, in the troposphere are gradually deposited onto polar ice caps. Antarctic snow may thus record acidic signals providing a history of past volcanic events. The high resolution sulphate concentration profile along a 197 m long ice core drilled at GV7 (Northern Victoria land) was obtained by Ion Chromatography on around 3500 discrete samples. The relatively high accumulation rate (241 +/- 13 mm we yr (-1)) and the 5-cm sampling resolution allowed a preliminary counted age scale. The obtained stratigraphy covers roughly the last millennium and 24 major volcanic eruptions were identified, dated, and tentatively ascribed to a source volcano. The deposition flux of volcanic sulphate was calculated for each signature and the results were compared with data from other Antarctic ice cores at regional and continental scale. Our results show that the regional variability is of the same order of magnitude as the continental one

    Spatial and temporal distributions of surface mass balance between Concordia and Vostok stations, Antarctica, from combined radar and ice core data: first results and detailed error analysis

    Get PDF
    Results from ground-penetrating radar (GPR) measurements and shallow ice cores carried out during a scientific traverse between Dome Concordia (DC) and Vostok stations are presented in order to infer both spatial and temporal characteristics of snow accumulation over the East Antarctic Plateau. Spatially continuous accumulation rates along the traverse are computed from the identification of three equally spaced radar reflections spanning about the last 600 years. Accurate dating of these internal reflection horizons (IRHs) is obtained from a depth-age relationship derived from volcanic horizons and bomb testing fallouts on a DC ice core and shows a very good consistency when tested against extra ice cores drilled along the radar profile. Accumulation rates are then inferred by accounting for density profiles down to each IRH. For the latter purpose, a careful error analysis showed that using a single and more accurate density profile along a DC core provided more reliable results than trying to include the potential spatial variability in density from extra (but less accurate) ice cores distributed along the profile. The most striking feature is an accumulation pattern that remains constant through time with persistent gradients such as a marked decrease from 26 mm w.e. yr(-1) at DC to 20 mm w.e. yr(-1) at the south-west end of the profile over the last 234 years on average (with a similar decrease from 25 to 19 mm w.e. yr(-1) over the last 592 years). As for the time dependency, despite an overall consistency with similar measurements carried out along the main East Antarctic divides, interpreting possible trends remains difficult. Indeed, error bars in our measurements are still too large to unambiguously infer an apparent time increase in accumulation rate. For the proposed absolute values, maximum margins of error are in the range 4 mm w.e. yr(-1) (last 234 years) to 2 mm w.e. yr(-1) (last 592 years), a decrease with depth mainly resulting from the time-averaging when computing accumulation rates

    Extraordinary blowing snow transport events in East Antarctica

    Get PDF
    In the convergence slope/coastal areas of Antarctica, a large fraction of snow is continuously eroded and exported by wind to the atmosphere and into the ocean. Snow transport observations from instruments and satellite images were acquired at the wind convergence zone of Terra Nova Bay (East Antarctica) throughout 2006 and 2007. Snow transport features are well-distinguished in satellite images and can extend vertically up to 200 m as first-order quantitatively estimated by driftometer sensor FlowCapt™. Maximum snow transportation occurs in the fall and winter seasons. Snow transportation (drift/blowing) was recorded for ~80% of the time, and 20% of time recorded, the flux is >10-2 kg m-2 s-1 with particle density increasing with height. Cumulative snow transportation is ~4 orders of magnitude higher than snow precipitation at the site. An increase in wind speed and transportation (~30%) was observed in 2007, which is in agreement with a reduction in observed snow accumulation. Extensive presence of ablation surface (blue ice and wind crust) upwind and downwind of the measurement site suggest that the combine processes of blowing snow sublimation and snow transport remove up to 50% of the precipitation in the coastal and slope convergence area. These phenomena represent a major negative effect on the snow accumulation, and they are not sufficiently taken into account in studies of surface mass balance. The observed wind-driven ablation explains the inconsistency between atmospheric model precipitation and measured snow accumulation value. © 2009 The Author(s)

    Location of a new ice core site at Talos Dome (East Antarctica)

    Get PDF
    In the frame of glaciology and palaeoclimate research, Talos Dome (72°48lS; 159°06lE), an ice dome on the East Antarctic plateau, represents the new selected site for a new deep ice core drilling. The increasing interest in this re- gion is due to the fact that the ice accumulation is higher here than in other domes in East Antarctica. A new deep drilling in this site could give important information about the climate changes near the coast. Previous papers showed that the dome summit is situated above a sloped bedrock. A new position on a relatively flat bedrock 5-6 km far from here in the SE direction was defined as a possible new ice core site for an European (Italy, France, Swiss and United Kingdom) drilling project named as TALDICE (TALos Dome Ice Core Project). This point, named as ID1 (159°11l00mE; 72°49l40mS), became the centre of the Radio Echo Sounding (RES) flight plan during the 2003 Italian Antarctic expedition, with the aim of confirming the new drilling site choice. In this paper 2001 and 2003 RES data sets have been used to draw a better resolution of ice thickness, bottom morphology and internal layering of a restricted area around the dome. Based on the final results, point ID1 has been confirmed as the new coring site. Fi- nally, the preliminary operations about the installation of the summer ice core camp (TALDICE) at ID1 site carried out during the XX Italian Antarctic expedition (November 2004-December 2005) are briefly described

    The spatial variability in isotopic composition of surface snow and snowpits on the East Antarctic Ice Sheet

    Get PDF
    The water isotope composition of snow precipitations, archived in the Antarctic ice sheet every year, is an important proxy of climatic conditions. This signal depends on several parameters such as local temperature, altitude, moisture source areas and air mass pathways. However, especially in areas where snow accumulation is very low (as on the East Antarctic Plateau), the isotopic composition is affected by additional spatial variability induced by the interactions between the atmosphere and snow surface, and the pristine signal may be modified through isotopic exchanges, sublimation processes and mechanical mixing originated from wind action. Here, we present the isotopic composition (D and 18O) and the second-order parameter d-excess of surface snow and snowpit samples collected during the Italian-French campaign in Antarctica (2019-2020). The sampling sites cover the area from Dumont D'Urville to Concordia Station and from Concordia Station towards the South Pole (EAIIST – East Antarctic International Ice Sheet Traverse). These data, compared with a previous dataset of Antarctic surface snow isotopic composition (Masson-Delmotte et al. 2008), are analyzed to determine the variability of the spatial relationship between precipitation isotopic composition and local temperature in relation to geographical parameters (latitude, distance from the coast and elevation). The interpretation of these factors determining the isotope signature is the base to better define the amount of the effects caused by subsequent interaction between atmosphere and surface snow, and by the wind action. Understanding the spatial variability of this proxy, which strongly decreases the signal-to-noise ratio, could permit to improve the use of the “isotopic thermometer” to quantify past changes in temperature based on the stable isotopic record of deep ice cores
    corecore