742 research outputs found

    Bouganin, an attractive weapon for immunotoxins

    Get PDF
    Bougainvillea (Bougainvillea spectabilis Willd.) is a plant widely used in folk medicine and many extracts from different tissues of this plant have been employed against several pathologies. The observation that leaf extracts of Bougainvillea possess antiviral properties led to the purification and characterization of a protein, named bouganin, which exhibits typical characteristics of type 1 ribosome-inactivating proteins (RIPs). Beyond that, bouganin has some peculiarities, such as a higher activity on DNA with respect to ribosomal RNA, low systemic toxicity, and immunological properties quite different than other RIPs. The sequencing of bouganin and the knowledge of its three-dimensional structure allowed to obtain a not immunogenic mutant of bouganin. These features make bouganin a very attractive tool as a component of immunotoxins (ITs), chimeric proteins obtained by linking a toxin to a carrier molecule. Bouganin-containing ITs showed very promising results in the experimental treatment of both hematological and solid tumors, and one bouganin-containing IT has entered Phase I clinical trial. In this review, we summarize the milestones of the research on bouganin such as bouganin chemico-physical characteristics, the structural properties and de-immunization studies. In addition, the in vitro and in vivo results obtained with bouganin-containing ITs are summarized

    High in vitro anti-tumor efficacy of dimeric rituximab/saporin-S6 immunotoxin

    Get PDF
    The anti-CD20 mAb Rituximab has revolutionized lymphoma therapy, in spite of a number of unresponsive or relapsing patients. Immunotoxins, consisting of toxins coupled to antibodies, are being investigated for their potential ability to augment Rituximab efficacy. Here, we compare the anti-tumor effect of high- and low-molecular-weight Rituximab/saporin-S6 immunotoxins, named HMW-IT and LMW-IT, respectively. Saporin-S6 is a potent and stable plant enzyme belonging to ribosome-inactivating proteins that causes protein synthesis arrest and consequent cell death. Saporin-S6 was conjugated to Rituximab through an artificial disulfide bond. The inhibitory activity of HMW-IT and LMW-IT was evaluated on cell-free protein synthesis and in two CD20+ lymphoma cell lines, Raji and D430B. Two different conjugates were separated on the basis of their molecular weight and further characterized. Both HMW-IT (dimeric) and LMW-IT (monomeric) maintained a high level of enzymatic activity in a cell-free system. HMW-IT, thanks to a higher toxin payload and more efficient antigen capping, showed stronger in vitro anti-tumor efficacy than LMW-IT against lymphoma cells. Dimeric HMW-IT can be used for lymphoma therapy at least for ex vivo treatments. The possibility of using HMW-IT augments the yield in immunotoxin preparation and allows the targeting of antigens with low internalization rates

    The role of xanthine oxidoreductase and uric acid in metabolic syndrome.

    Get PDF
    Abstract Xanthine oxidoreductase (XOR) could contribute to the pathogenesis of metabolic syndrome through the oxidative stress and the inflammatory response induced by XOR-derived reactive oxygen species and uric acid. Hyperuricemia is strongly linked to hypertension, insulin resistance, obesity and hypertriglyceridemia. The serum level of XOR is correlated to triglyceride/high density lipoprotein cholesterol ratio, fasting glycemia, fasting insulinemia and insulin resistance index. Increased activity of endothelium-linked XOR may promote hypertension. In addition, XOR is implicated in pre-adipocyte differentiation and adipogenesis. XOR and uric acid play a role in cell transformation and proliferation as well as in the progression and metastatic process. Collected evidences confirm the contribution of XOR and uric acid in metabolic syndrome. However, in some circumstances XOR and uric acid may have anti-oxidant protective outcomes. The dual-face role of both XOR and uric acid explains the contradictory results obtained with XOR inhibitors and suggests caution in their therapeutic use

    Heterophyllin: A New Adenia Toxic Lectin with Peculiar Biological Properties

    Get PDF
    Ribosome-inactivating proteins (RIPs) are plant toxins that were identified for their ability to irreversibly damage ribosomes, thereby causing arrest of protein synthesis and induction of cell death. The RIPs purified from Adenia plants are the most potent ones. Here, we describe a novel toxic lectin from Adenia heterophylla caudex, which has been named heterophyllin. Heterophyllin shows the enzymatic and lectin properties of type 2 RIPs. Interestingly, in immunoreactivity experiments, heterophyllin poorly cross-reacts with sera against all other tested RIPs. The cytotoxic effects and death pathways triggered by heterophyllin were investigated in three human-derived cell lines: NB100, T24, and MCF7, and compared to ricin, the most known and studied type 2 RIP. Heterophyllin was able to completely abolish cell viability at nM concentration. A strong induction of apoptosis, but not necrosis, and the involvement of oxidative stress and necroptosis were observed in all the tested cell lines. Therefore, the enzymatic, immunological, and biological activities of heterophyllin make it an interesting molecule, worthy of further in-depth analysis to verify its possible pharmacological application

    Immunoconjugates for Osteosarcoma Therapy: Preclinical Experiences and Future Perspectives

    Get PDF
    Osteosarcoma (OS) is an aggressive osteoid-producing tumor of mesenchymal origin, which represents the most common primary bone malignancy. It is characterized by a complex and frequently uncertain etiology. The current standard care for high-grade OS treatment is neoadjuvant chemotherapy, followed by surgery and post-operative chemotherapy. In order to ameliorate survival rates of patients, new therapeutic approaches have been evaluated, mainly immunotherapy with antibody-drug conjugates or immunoconjugates. These molecules consist of a carrier (frequently an antibody) joined by a linker to a toxic moiety (drug, radionuclide, or toxin). Although several clinical trials with immunoconjugates have been conducted, mainly in hematological tumors, their potential as therapeutic agents is relatively under-explored in many types of cancer. In this review, we report the immunoconjugates directed against OS surface antigens, considering the in vitro and in vivo studies. To date, several attempts have been made in preclinical settings, reporting encouraging results and demonstrating the validity of the idea. The clinical experience with glembatumumab vedotin may provide new insights into the real efficacy of antibody-drug conjugates for OS therapy, possibly giving more information about patient selection. Moreover, new opportunities could arise from the ongoing clinical trials in OS patients with unconjugated antibodies that could represent future candidates as carrier moieties of immunoconjugates

    Plants Producing Ribosome-Inactivating Proteins in Traditional Medicine

    Get PDF
    Ribosome-inactivating proteins (RIPs) are enzymes that deadenylate nucleic acids and are broadly distributed in the plant kingdom. Many plants that contain RIPs are listed in the pharmacopoeias of folk medicine all over the world, mostly because of their toxicity. This review analyses the position occupied in traditional medicine by plants from which RIPs have been isolated. The overview starts from the antique age of the Mediterranean area with ancient Egypt, followed by the Greek and Roman classic period. Then, the ancient oriental civilizations of China and India are evaluated. More recently, Unani medicine and European folk medicine are examined. Finally, the African and American folk medicines are taken into consideration. In conclusion, a list of RIP-expressing plants, which have been used in folk medicine, is provided with the geographical distribution and the prescriptions that are recommended by traditional healers. Some final considerations are provided on the present utilization of such herbal treatments, both in developing and developed countries, often in the absence of scientific validation. The most promising prospect for the medicinal use of RIP-expressing plants is the conjugation of purified RIPs to antibodies that recognise tumour antigens for cancer therapy

    Cardiac magnetic resonance in cocaine-induced myocardial damage

    Get PDF
    A 54-year-old male with history of cocaine abuse underwent trans-thoracic echocardiography that showed hyper-echogenicity of the basal segments of the septum and infero-lateral wall of the left ventricle. The patient underwent cardiac CT that reported diffuse non-obstructive CAD. Cardiac MR showed LGE patterns consistent with non-ischemic myocardial damage associated with cocaine abuse

    Role of HO/CO in the Control of Peripheral Circulation in Humans

    Get PDF
    Experimental studies show that the heme oxygenase/carbon monoxide system (HO/CO) plays an important role in the homeostasis of circulation and in the pathophysiology of hypertension. No data are available on its role in the control of peripheral circulation in humans. We evaluated the effects of inhibition of HO with stannous mesoporphyrin IX (SnMP) (200 μM) locally administered by iontophoresis, on human skin blood flow, evaluated by laser-Doppler flowmetry, in the presence and absence of nitric oxide synthase (NOS) inhibition with L-NG-Nitroarginine methyl ester (L-NAME) (100 μM). We also evaluated the effect of HO inhibition on vasodilatation induced by acetylcholine (ACh) and vasoconstriction caused by noradrenaline (NA). SnMP and L-NAME caused a similar 20–25% decrease in skin flow. After nitric oxide (NO) inhibition with L-NAME, HO inhibition with SnMP caused a further 20% decrease in skin perfusion. SnMP decreased vasodilatation induced by ACh by about 70%, while it did not affect vasoconstriction to NA. In conclusion, HO/CO participates in the control of peripheral circulation, independently from NO, and is involved in vasodilatation to ACh

    Apoptosis and necroptosis induced by stenodactylin in neuroblastoma cells can be completely prevented through caspase inhibition plus catalase or necrostatin-1

    Get PDF
    Abstract Background Stenodactylin is a highly toxic plant lectin purified from the caudex of Adenia stenodactyla , with molecular structure, intracellular routing and enzyme activity similar to those of ricin, a well-known type 2 ribosome-inactivating protein. However, in contrast with ricin, stenodactylin is retrogradely transported not only in peripheral nerves but also in the central nervous system. Purpose Stenodactylin properties make it a potential candidate for application in neurobiology and in experimental therapies against cancer. Thus, it is necessary to better clarify the toxic activity of this compound. Study design We investigated the mechanism of stenodactylin-induced cell death in the neuroblastoma-derived cell line, NB100, evaluating the implications of different death pathways and the involvement of oxidative stress. Methods Stenodactylin cytotoxicity was determined by evaluating protein synthesis and other viability parameters. Cell death pathways and oxidative stress were analysed through flow cytometry and microscopy. Inhibitors of apoptosis, oxidative stress and necroptosis were tested to evaluate their protective effect against stenodactylin cytotoxicity. Results Stenodactylin efficiently blocked protein synthesis and reduced the viability of neuroblastoma cells at an extremely low concentration and over a short time (1 pM, 24 h). Stenodactylin induced the strong and rapid activation of apoptosis and the production of free radicals. Here, for the first time, a complete and long lasting protection from the lethal effect induced by a toxic type 2 ribosome-inactivating protein has been obtained by combining the caspase inhibitor Z-VAD-fmk, to either the hydrogen peroxide scavenger catalase or the necroptotic inhibitor necrostatin-1. Conclusion In respect to stenodactylin cytotoxicity, our results: (i) confirm the high toxicity to nervous cells, (ii) indicate that multiple cell death pathways can be induced, (iii) show that apoptosis is the main death pathway, (iv) demonstrate the involvement of necroptosis and (v) oxidative stress

    Kirkiin: A new toxic type 2 ribosome-Inactivating protein from the caudex of Adenia kirkii

    Get PDF
    Producción CientíficaRibosome-inactivating proteins (RIPs) are plant toxins that irreversibly damage ribosomes and other substrates, thus causing cell death. RIPs are classified in type 1 RIPs, single-chain enzymatic proteins, and type 2 RIPs, consisting of active A chains, similar to type 1 RIPs, linked to lectin B chains, which enable the rapid internalization of the toxin into the cell. For this reason, many type 2 RIPs are very cytotoxic, ricin, volkensin and stenodactylin being the most toxic ones. From the caudex of Adenia kirkii (Mast.) Engl., a new type 2 RIP, named kirkiin, was purified by affinity chromatography on acid-treated Sepharose CL-6B and gel filtration. The lectin, with molecular weight of about 58 kDa, agglutinated erythrocytes and inhibited protein synthesis in a cell-free system at very low concentrations. Moreover, kirkiin was able to depurinate mammalian and yeast ribosomes, but it showed little or no activity on other nucleotide substrates. In neuroblastoma cells, kirkiin inhibited protein synthesis and induced apoptosis at doses in the pM range. The biological characteristics of kirkiin make this protein a potential candidate for several experimental pharmacological applications both alone for local treatments and as component of immunoconjugates for systemic targeting in neurodegenerative studies and cancer therapy.Universidad de Bolonia y Pallotti Legacies for Cancer Research; Fundación CARISBO - (Project 2019.0539)Junta de Castilla y León - (Grant VA033G19
    corecore