8,801 research outputs found

    Grasses and the resource availability hypothesis: the importance of silica-based defences

    Get PDF
    The resource availability hypothesis (RAH) predicts that allocation of resources to anti-herbivore defences differs between species according to their growth rate. We tested this hypothesis by assessing the growth and defence investment strategies of 18 grass species and comparing them against vole feeding preferences. In addition, we assessed the effectiveness of silica, the primary defence in many grasses, in influencing vole feeding behaviour. Across species, we found that there was a strong negative relationship between the overall investment in defence and growth rate, thus supporting predictions of the RAH. However, no such relationship was found when assessing the various individual anti-herbivore defences, suggesting that different grass species show significant variation in their relative investment in strategies such as phenolic concentration, silica concentration and leaf toughness. Silica was the most influential defensive factor in determining vole feeding preference. Experimentally induced increases in leaf silica concentration deterred vole feeding in three of the five species tested, and altered feeding preference ranks between species. The strong positive relationship between silica concentration and leaf abrasiveness, when assessed both within and between species, suggests that increased abrasiveness is the mechanism by which silica deters feeding. Although grasses are often considered to be tolerant of herbivore damage rather then defended against it, they do follow predictions of defence allocation strategy based on their growth rates, and this affects the feeding behaviour of generalist grass-feeding herbivores

    Euler Obstruction and Defects of Functions on Singular Varieties

    Full text link
    Several authors have proved Lefschetz type formulae for the local Euler obstruction. In particular, a result of this type is proved in [BLS].The formula proved in that paper turns out to be equivalent to saying that the local Euler obstruction, as a constructible function, satisfies the local Euler condition (in bivariant theory) with respect to general linear forms. The purpose of this work is to understand what prevents the local Euler obstruction of satisfying the local Euler condition with respect to functions which are singular at the considered point. This is measured by an invariant (or ``defect'') of such functions that we define below. We give an interpretation of this defect in terms of vanishing cycles, which allows us to calculate it algebraically. When the function has an isolated singularity, our invariant can be defined geometrically, via obstruction theory. We notice that this invariant unifies the usual concepts of {\it the Milnor number} of a function and of the {\it local Euler obstruction} of an analytic set.Comment: 18 page

    Global Linear Complexity Analysis of Filter Keystream Generators

    Full text link
    An efficient algorithm for computing lower bounds on the global linear complexity of nonlinearly filtered PN-sequences is presented. The technique here developed is based exclusively on the realization of bit wise logic operations, which makes it appropriate for both software simulation and hardware implementation. The present algorithm can be applied to any arbitrary nonlinear function with a unique term of maximum order. Thus, the extent of its application for different types of filter generators is quite broad. Furthermore, emphasis is on the large lower bounds obtained that confirm the exponential growth of the global linear complexity for the class of nonlinearly filtered sequences

    Theoretical limits on magnetic field strengths in low-mass stars

    Get PDF
    Observations have suggested that some low-mass stars have larger radii than predicted by 1-D structure models. Some theoretical models have invoked very strong interior magnetic fields (of order 1 MG or more) as a possible cause of such large radii. Whether fields of that strength could in principle by generated by dynamo action in these objects is unclear, and we do not address the matter directly. Instead, we examine whether such fields could remain in the interior of a low mass object for a significant time, and whether they would have any other obvious signatures. First, we estimate timescales for the loss of strong fields by magnetic buoyancy instabilities. We consider a range of field strengths and simple morphologies, including both idealized flux tubes and smooth layers of field. We confirm some of our analytical estimates using thin flux tube magnetohydrodynamic (MHD) simulations of the rise of buoyant fields in a fully-convective M-dwarf. Separately, we consider the Ohmic dissipation of such fields. We find that dissipation provides a complementary constraint to buoyancy: while small-scale, fibril fields might be regenerated faster than they rise, the dissipative heating associated with such fields would in some cases greatly exceed the luminosity of the star. We show how these constraints combine to yield limits on the internal field strength and morphology in low-mass stars. In particular, we find that for stars of 0.3 solar masses, no fields in flux tubes stronger than about 800 kG are simultaneously consistent with both constraints.Comment: 19 pages, 10 figures, accepted to Ap

    Hemiparasitic plant impacts animal and plant communities across four trophic levels

    Get PDF
    1.Understanding the impact of species on community structure is a fundamental question in ecology. There is a growing body of evidence that suggests that both sub-dominant species and parasites can have a disproportionately large impact. 2.Here we report the impacts of an organism that is both subdominant and parasitic, the hemiparasite Rhinanthus minor. Whilst the impact of parasitic angiosperms on their hosts and, to a lesser degree, co-existing plant species, have been well characterized, much less is known about their impacts on higher trophic levels. 3.We experimentally manipulated field densities of the hemiparasite Rhinanthus minor in a species rich grassland, comparing the plant and invertebrate communities in plots where it was removed, at natural densities or at enhanced densities. 4.Plots with natural and enhanced densities of R. minor had lower plant biomass than plots without the hemiparasite, but enhanced densities almost doubled the abundance of invertebrates within the plots across all trophic levels, with effects evident in herbivores, predators and detritivores. 5.The hemiparasite R. minor, despite being a sub-dominant and transient component within plant communities that it inhabits, has profound effects on four different trophic levels. These effects persist beyond the life of the hemiparasite, emphasizing its role as a keystone species in grassland communitie

    Limitations for shapelet-based weak-lensing measurements

    Full text link
    We seek to understand the impact on shape estimators obtained from circular and elliptical shapelet models under two realistic conditions: (a) only a limited number of shapelet modes is available for the model, and (b) the intrinsic galactic shapes are not restricted to shapelet models. We create a set of simplistic simulations, in which the galactic shapes follow a Sersic profile. By varying the Sersic index and applied shear, we quantify the amount of bias on shear estimates which arises from insufficient modeling. Additional complications due to PSF convolution, pixelation and pixel noise are also discussed. Steep and highly elliptical galaxy shapes cannot be accurately modeled within the circular shapelet basis system and are biased towards shallower and less elongated shapes. This problem can be cured partially by allowing elliptical basis functions, but for steep profiles elliptical shapelet models still depend critically on accurate ellipticity priors. As a result, shear estimates are typically biased low. Independently of the particular form of the estimator, the bias depends on the true intrinsic galaxy morphology, but also on the size and shape of the PSF. As long as the issues discussed here are not solved, the shapelet method cannot provide weak-lensing measurements with an accuracy demanded by upcoming missions and surveys, unless one can provide an accurate and reliable calibration, specific for the dataset under investigation.Comment: 8 pages, 5 figures, submitted to A&

    The impact of mass-loss on the evolution and pre-supernova properties of red supergiants

    Get PDF
    The post main-sequence evolution of massive stars is very sensitive to many parameters of the stellar models. Key parameters are the mixing processes, the metallicity, the mass-loss rate and the effect of a close companion. We study how the red supergiant lifetimes, the tracks in the Hertzsprung-Russel diagram (HRD), the positions in this diagram of the pre-supernova progenitor as well as the structure of the stars at that time change for various mass-loss rates during the red supergiant phase (RSG), and for two different initial rotation velocities. The surface abundances of RSGs are much more sensitive to rotation than to the mass-loss rates during that phase. A change of the RSG mass-loss rate has a strong impact on the RSG lifetimes and therefore on the luminosity function of RSGs. At solar metallicity, the enhanced mass-loss rate models do produce significant changes on the populations of blue, yellow and red supergiants. When extended blue loops or blue ward excursions are produced by enhanced mass-loss, the models predict that a majority of blue (yellow) supergiants are post RSG objects. These post RSG stars are predicted to show much smaller surface rotational velocities than similar blue supergiants on their first crossing of the HR gap. The position in the HRD of the end point of the evolution depends on the mass of the hydrogen envelope. More precisely, whenever, at the pre-supernova stage, the H-rich envelope contains more than about 5\% of the initial mass, the star is a red supergiant, and whenever the H-rich envelope contains less than 1\% of the total mass the star is a blue supergiant. For intermediate situations, intermediate colors/effective temperatures are obtained. Yellow progenitors for core collapse supernovae can be explained by the enhanced mass-loss rate models, while the red progenitors are better fitted by the standard mass-loss rate models.Comment: 19 pages, 11 figures, 6 tables, accepted for publication in Astronomy and Astrophysic

    Kowledge Management and Organizational Learning: An Overview of the Mini Track

    Get PDF
    This paper provides an introduction to the knowledge management and organizational learning mini track. We begin with a discussion of how the mini track has evolved over time, which is followed by an overview of knowledge management and organizational learning. This is followed by a discussion of some of the pressing research issues in the area. This overview concludes with a discussion of the journals and conferences associated with knowledge management and organizational learning

    Wolf-Rayets in IC10: Probing the Nearest Starburst

    Get PDF
    IC10 is the nearest starburst galaxy, as revealed both by its Halpha surface brightness and the large number of Wolf-Rayet stars (WRs) per unit area. The relative number of known WC- to WN-type WRs has been thought to be unusually high (~2), unexpected for IC10's metallicity. In this Letter we report the first results of a new and deeper survey for WRs in IC10. We sucessfully detected all of the spectroscopically known WRs, and based upon comparisons with a neighboring control field, estimate that the total number of WRs in IC10 is about 100. We present spectroscopic confirmation of two of our WR candidates, both of which are of WN type. Our photometric survey predicts that the actual WC/WN ratio is ~0.3. This makes the WC/WN ratio of IC 10 consistent with that expected for its metallicity, but greatly increases the already unusually high number of WRs, resulting in a surface density that is about 20 times higher than in the LMC. If the majority of these candidates are spectroscopically confirmed, IC10 must have an exceptional population of high mass stars.Comment: Accepted by ApJL; only minor correction in this versio
    • …
    corecore