17 research outputs found

    THz QCL - Based active imaging applied to composite materials diagnostic

    Get PDF
    This paper presents a CW raster-scanning THz imaging setup, used to perform Non-Destructive Testing of Kevlar and carbon fibre samples. The setup uses a 2.5 THz Quantum Cascade Laser as a source. Delamination defect in a Kevlar sample was detected showing a sensitivity to laser polarization orientation. Detection of a break in a carbon/epoxy sample was also performed

    Battements de photons uniques dans un interféromÚtre à base de modulateurs acousto-optiques

    Get PDF
    International audienceWe present in the following a quantum optics experiment appropriate for advanced undergraduate students with former experience in quantum optics. It extends classical single photon setups to the time dependent domain. We demonstrate self-heterodyning of heralded single photons using a Mach-Zender like interferometer where beamsplitters are replaced by two acousto-optic modulators (AOMs). The single pho-ton beat note is recorded over time at the frequency difference between the RF generators driving the AOMs, which makes it observable directly on a human time scale i. e. with periods above a fraction of a second. To compare with our observations, we tailor the standard quantum optics formalism for beam splitters to take into account the frequency shifts associated with the AOMs

    Volume diffraction gratings for optical telecommunications applications: design study for a spectral equalizer

    Get PDF
    The main characteristics required for a diffraction grating used for demultiplexing functions in spectral equalizing systems are investigated, both theoretically and experimentally. We show that volume-phase holographic (VPH) gratings can be used as dispersive elements instead of classic reflection surface-relief gratings presently employed in most optical telecommunications devices. A design method for this type of diffraction grating and experimental results are presented, confirming that VPH gratings are well suited to such applications

    Band-edge-induced Bragg diffraction in two-dimensional photonic crystals

    Get PDF
    Two-dimensional photonic crystals composed of two orthogonal volume diffraction gratings have been photogenerated in photopolymers. When the read beam is set at the Bragg angle, the diffraction efficiency of the transmission grating is strongly enhanced at the band edge of the reflection grating recorded in the material. Such a device provides Bragg operation and enhancement of the diffraction efficiency of the thin diffraction grating together with good wavelength selectivity. Such advantages could be interesting for optical signal processing

    Tunable grating-assisted surface plasmon resonance by use of nano-polymer dispersed liquid crystal electro-optical material

    Get PDF
    This paper reports on the experimental observation of the displacement of a surface plasmon resonance (SPR) excited by a metallic diffraction grating. This effect is achieved by the use of an electro-optical material composed of nano-sized droplets of liquid crystals dispersed in a host polymer. The average refractive index of this material in the form of a thin film on the undulated metal surface can be modified with the application of an external electric field and to tune the wavelength at which the SPR excitation leads to a reflection minimum. The theoretical design and experimental demonstration of the principle of this component are described

    Multiplexed holographic transmission gratings recorded in holographic polymer-dispersed liquid crystals: static and dynamic studies

    Get PDF
    The optimization of the experimental parameters of two multiplexed holographic transmission gratings recorded in holographic polymer-dispersed liquid crystals is investigated. Two methods are used to record the holograms: simultaneous and sequential multiplexing. These two processes are optimized to produce two multiplexed Bragg gratings that have the same and the highest possible diffraction efficiencies in the first order. The two methods show similar results when suitable recording parameters are used. The parameters of the recorded gratings (mainly the refractive-index modulation) are retrieved by use of an extension of the rigorous coupled-wave theory to multiplexed gratings. Finally, the response of the holograms to an electric field is studied. We demonstrate few coupling effects between the behavior of both gratings, and we expect a possibility of switching from one grating to the other

    THz QCL-based active imaging dedicated to non-destructive testing of composite materials used in aeronautics

    Get PDF
    This paper presents a CW raster-scanning THz imaging setup, used to perform Non-Destructive Testing of KevlarTMand carbon fibre samples. The setup uses a 2.5 THz Quantum Cascade Laser as a source. Delamination defect in a Kevlar sample was detected showing a sensitivity to laser polarization orientation. Detection of a break in a carbon/epoxy sample was also performed

    Integration of nanostructured planar diffractive lenses dedicated to near infrared detection for CMOS image sensors

    Get PDF
    This paper deals with the integration of metallic and dielectric nanostructured planar lenses into a pixel from a silicon based CMOS image sensor, for a monochromatic application at 1.064 Όm. The first is a Plasmonic Lens, based on the phase delay through nanoslits, which has been found to be hardly compatible with current CMOS technology and exhibits a notable metallic absorption. The second is a dielectric Phase-Fresnel Lens integrated at the top of a pixel, it exhibits an Optical Efficiency (OE) improved by a few percent and an angle of view of 50°. The third one is a metallic diffractive lens integrated inside a pixel, which shows a better OE and an angle of view of 24°. The last two lenses exhibit a compatibility with a spectral band close to 1.064 Όm

    Terahertz Time-Domain Spectroscopy of Thermoresponsive Polymers in Aqueous Solution

    Get PDF
    The behavior of highly concentrated aqueous solutions of two thermoresponsive polymers poly(N-isopropylacrylamide) (PNIPAm) and poly(N-vinylcaprolactam) (PVCL) have been investigated by terahertz time-domain spectroscopy (THz-TDS). Measurements have been performed for concentrations up to 20 wt %, over a frequency range from 0.3 to 1.5 THz and for temperatures from 20 to 45 °C including the zone for lower critical solution temperature (LCST). THz-TDS enables the study of the behavior of water present in the solution (i.e., free or bound to the polymer). From these measurements, in addition to phase transition temperature, thermodynamic data such as variation of enthalpy and entropy can be inferred. Thanks to these data, further insights upon the mechanism involved during the dehydration phenomenon were obtained. These results were compared to the ones issued from dynamic light scattering, spectroscopy, or microscopy techniques to underline the interest to use THz-TDS as a powerful tool to characterize the behavior of thermoresponsive polymers in highly concentrated solutions

    Design of a CMOS image sensor pixel with embedded polysilicon nano-grating for near-infrared imaging enhancement

    Get PDF
    Complementary metal–oxide semiconductor (CMOS) image sensor sensitivity in the near-infrared spectrum is limited by the absorption length in silicon. To deal with that limitation, we evaluate the implementation of a polysilicon nano-grating inside a pixel, at the transistor gate level of a 90 nm standard CMOS process, through opto-electrical simulations. The studied pixel structure involves a polysilicon nano-grating, designed with the fabrication layer of the transistor gate, which does not require any modifications in the process flow. The diffraction effect of the nano-grating increases the length of the light path in the photosensitive area and thus increases the photoelectric conversion efficiency. The nano-grating is integrated in combination with deep trench isolations to reduce cross talk between pixels. Coupled optical and electrical simulations report 33% external quantum efficiency improvement and 7% cross talk reduction at 850 nm
    corecore