167 research outputs found
On computing the degree of convexity of polyominoes
In this paper we present an algorithm which has as input a convex polyomino P and computes its degree of convexity, de\ufb01ned as the smallest integer k such that any two cells of P can be joined by a monotone path inside P with at most k changes of direction. The algorithm uses space O(m + n) to represent a polyomino P with n rows and m columns, and has time complexity O(min(m, rk)), where r is the number of corners of P. Moreover, the algorithm leads naturally to a decomposition of P into simpler polyominoes
Characterization of the stimulation output of four devices for focal muscle vibration
Different devices for mechano-acoustic muscle vibration became available on the market in the last ten years. Although the use of these vibrators is increasing in research and clinical settings, the features of their stimulation output were never described in literature. In this study we aimed to quantify and compare the stimulation output of the four most widespread pneumatic devices for focal muscle vibration available on the market. A piezoelectric pressure sensor was used to measure the pressure profile generated by the four selected devices in the following experimental conditions: i) measurement of the output changes associated with variations of the stimulation amplitude for three stimulation frequencies (100 Hz, 200 Hz, and 300 Hz); ii) measurement of the output changes during a 20-min long stimulation at constant frequency (300 Hz) and amplitude; iii) measurement of the output changes associated with the progressive activation of all stimulation channels at constant frequency (200 Hz) for different amplitudes. The maximum peak-to-peak amplitudes of the pressure waves were in the range 102 mbar - 369 mbar (below the maximum values declared by the different manufacturers). The shape of the pressure waves generated by the four devices was quasi-sinusoidal and asymmetric with respect to the atmospheric pressure. All output features had a remarkable intra- and inter-device variability. Further studies are required to support the technological improvement of the currently available devices and to focus the issues of vibration effectiveness, limitations, proper protocols, modalities of its application and assessment in neuromuscular training and rehabilitation
Limb reconstruction with knee mega-prosthesis in patients with distal femur primary tumours: gait analysis and alignment evaluation
Introduction: The aim of this study was the functional evaluation and lower limb alignment assessment of patients with a modular knee prosthesis after distal femur resection for primary bone tumour. Materials and methods: 15 patients affected by distal femur tumor and treated with a megaprosthesis implant (6 females and 9 males, mean age: 41 years, range: 15-74 years) and 15 controls were recruited for the study. For each subject the function evaluation included an instrumented gait analysis, while only patients underwent a teleradiography and a latero-lateral X-ray projection of the knee. Results: The duration of the stance phase of gait was shortened in the prosthetic limb with respect to the contralateral limb (57.5±3.6 % gait cycle vs. 60.9±4.8 % gait cycle, P = 0.01), with a correspondent increase of the swing phase. The prosthetic limb also showed an altered knee joint kinematic curve during gait, with a flexion deficit at load response with respect to the contralateral limb (4.5±3.6° vs. 13.4±5.0°, P = 0.000003). Abnormal timing in the muscle activation intervals were observed for tibialis anterior, gastrocnemius lateralis and rectus femoris of the prosthetic limb. The prosthetic limb was found to be misaligned with respect to the contralateral limb, both for the femorotibial (P<0.05) and the ankle joints (P<0.05). Conclusions: Gait analysis performed widely in reference centres could lead to a change in the design of megaprostheses to improve the function and prevent degenerative changes in not involved joint. A multicentric expertise is mandator
Climate Change and Mental Health: A Scoping Review.
Climate change is negatively impacting the mental health of populations. This scoping review aims to assess the available literature related to climate change and mental health across the World Health Organisation's (WHO) five global research priorities for protecting human health from climate change. We conducted a scoping review to identify original research studies related to mental health and climate change using online academic databases. We assessed the quality of studies where appropriate assessment tools were available. We identified 120 original studies published between 2001 and 2020. Most studies were quantitative (n = 67), cross-sectional (n = 42), conducted in high-income countries (n = 87), and concerned with the first of the WHO global research priorities-assessing the mental health risks associated with climate change (n = 101). Several climate-related exposures, including heat, humidity, rainfall, drought, wildfires, and floods were associated with psychological distress, worsened mental health, and higher mortality among people with pre-existing mental health conditions, increased psychiatric hospitalisations, and heightened suicide rates. Few studies (n = 19) addressed the other four global research priorities of protecting health from climate change (effective interventions (n = 8); mitigation and adaptation (n = 7); improving decision-support (n = 3); and cost estimations (n = 1)). While climate change and mental health represents a rapidly growing area of research, it needs to accelerate and broaden in scope to respond with evidence-based mitigation and adaptation strategies
- …