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Abstract

The generalized skeletal muscle disorder that involves (in
elderly subjects) the progressive loss of muscle mass and
function has been defined sarcopenia, whereas the rapid-
onset (traumatic or surgical) and focal (unilateral) loss of
skeletal muscle with resultant functional impairment has been
defined volumetric muscle loss. Different tools and approaches
are commonly used in the clinical settings to quantify the loss
of muscle or lean mass and to assess the consequent motor
impairment. This review describes the technical principles and
provides a summary of the main parameters that can be ob-
tained to assess lean mass (and its distribution) or muscle size
(and its structure) through the two imaging techniques most
easily accessible and therefore frequently adopted in the clin-
ical practice: dual-energy X-ray absorptiometry and muscle
ultrasonography.
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Introduction
Skeletal muscles can be regarded as the largest organ of
the human body, accounting for approximately 20e40%
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of the total body weight in women and 30e50% in men,

exhibiting major metabolic activity by contributing up
to 40% of the resting metabolic rate in adults, and
serving as the largest body protein pool. The two main
components of skeletal muscles are represented by
muscle fibers and connective tissue. Individual muscle
fibers are grouped together in bundles, which are
commonly known as fascicles, and several fascicles join
together to form an individual muscle. Muscle fibers
are highly adaptable cells, responding to numerous
environmental, physiological stimuli (e.g., mechanical
loading, nutrient availability, disuse, and inactivity),

and pathological challenges (e.g., neuromuscular dis-
orders, drugs, aging) by changing their phenotypic
profile in terms of size, composition, biochemical, and
metabolic properties [1e3]. The generalized (although
not uniform among muscles) skeletal muscle disorder
that involves in elderly subjects the progressive loss of
muscle mass and function has been defined sarcopenia
[4, 5**, 6**, 7], whereas the rapid-onset (traumatic or
surgical) and focal (unilateral) loss of skeletal muscle
with resultant functional impairment has been defined
volumetric muscle loss (VML) [8,9]. The latter disor-

der represents an emerging focus area among ortho-
pedic and rehabilitation medicine fields [10,11].
Although no standardized evaluation protocol exists for
the characterization and quantification of VML, and no
guidelines have been produced for a disease-specific
evaluation of muscle impairment, the following
assessment tools are commonly used in the clinical
settings: clinical photographs and video recordings,
range of motion measurements, manual muscle
strength testing, and isometric or isokinetic muscle
function testing [8]. Moreover, the whole spectrum of

radiological imaging modalities can also be useful in
documenting VML: dual-energy X-ray absorptiometry
(DXA), ultrasonography (US), computed tomography,
and magnetic resonance.

The aim of this narrative review is to describe the
technical principles and provide a summary of the main
parameters that can be obtained to assess lean and
muscle mass through the two imaging techniques most
easily accessible and therefore frequently adopted in the
clinical practice: DXA and US.
www.sciencedirect.com
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Dual-energy X-ray absorptiometry
DXA is a two-dimensional technique originally developed

to evaluate bone mineral content (BMC) and bone
mineral density. In recent years, it gained popularity also
as an accurate and reliable method to investigate whole
body and regional soft tissue composition [12, 13, 14**,
15*]. The technique is based on the principle that X-rays
of different energies are differentially attenuated when
passing through different tissues: the beam of X-rays is
attenuated in proportion to the composition and thick-
ness of the material. The X-ray attenuations enable to
estimate the mass of the different compartments, given
simple algebra and the physical properties of the

compartment materials. By radiating the body in the
anterioreposterior direction and assuming a two-
compartment model in each measurement point
(pixel), a two-dimensional (coronal) projection of the
Figure 1

Dual-energy X-ray absorptiometry images of body composition for two represe
with different instruments. Color image maps show in panels A and D the relat
panel A, orange in panel D), and bone (blue in panel A and white in panel D), w
C. Crystal image maps (panels B and E) show the cut lines (yellow in panel B
considered for body composition assessment (upper limbs, lower limbs, trunk)
adipose tissue (VAT) slice (light blue regions). Dotted red lines in panel B del
thigh, 5.0 kg; left thigh, 4.9 kg).

www.sciencedirect.com
body can be reconstructed (representative images of
body scans obtained with different instruments are
shown in Figure 1). The model assumes that pixels
containing bone (that represent approximately 30e40%
of the pixels of the projected body) depend on BMC and
soft tissue ratio, while pixels not containing bone depend
on fat mass (FM) and lean mass (LM) ratio. In other
words, DXA‘simplifies’ the body into two compartments:

bone and soft tissue. The attenuation in the soft tissue
can be resolved further to yield FM and LM, as fat and
lean tissues have different attenuation characteristics. In
fact, DXA manufacturers use calibration phantoms made
of biologically equivalent materials that have known
compositions to derive equations that predict BMC, FM,
and LM from measured pixel attenuation values. Taken
together, DXA provides an estimate of the composition of
three body compartments: bone, fat, and lean.
ntative subjects (subject 1: panels A–B; subject 2: panels: C-D-E) studied
ive distribution of fat (yellow in both panels), lean tissue (orange and red in
hereas the relative distribution of fat (low, medium, high) in shown in panel
and blue in panel E) used to distinguish the standard regions of interest

. Panel B also highlights the gynoid (G)/android (A) areas and the visceral
imit the thigh region of interest used to quantify the thigh lean mass (right

Current Opinion in Pharmacology 2021, 57:148–156

www.sciencedirect.com/science/journal/14714892


150 Musculoskeletal
A limitation of this technique is represented by the
assumption of uniform and constant (73% of body water)
LM hydration, which is not always true as hydration
varies with age, gender, physical activity, and health
status. Other limitations of the technique are that DXA
does not assess the LM quality (i.e., the extent of fat
infiltration of skeletal muscles, which is also known as
myosteatosis) and that single body regions (i.e., indi-

vidual muscles) cannot be assessed separately. System-
atic variation in the absolute estimates of LM and FM
can also arise from different hardware and software ac-
commodations to several factors, including treatment of
pixels for which a small portion is bone and in-
terpolations for soft tissues located over bone. Briefly,
the soft tissue composition is assumed to be comparable
between soft tissues over bones and bone-free tissues:
the amount of LM and FM in soft tissues over bones is
therefore based on neighboring pixels not containing
bone.

Total body LM and appendicular lean mass ([ALM]: the
lean mass of the upper and lower limbs) are the main
parameters obtained through DXA to assess LM. The
absolute values of LM and ALM can be normalized to
height2 (or to the body mass index) to account for
allometric differences in body size, thus obtaining the
lean mass index (LMI: kg/m2) or the appendicular lean
mass index (ALMI: kg/m2) that enable the comparisons
among different subjects independently of their body
size [16]. Different cut-off points have been proposed

to discriminate between normal and low LM: (i)
Baumgartner et al. [17] identified the cut-off points for
low LM (i.e., values two standard deviations below the
sex-specific means observed in Caucasian young adults)
as ALMI <7.26 kg/m2 in men and <5.45 kg/m2 in
women; (ii) Cawthon at al. [18] more recently proposed
the cut-off points for low LM (i.e., values discriminating
between normal and weak elderly subjects of different
ethnic groups) as ALM <19.75 kg (or ALM normalized
to BMI <0.789) in men and <15.02 kg (or ALM
normalized to BMI <0.512) in women; (iii) the last
revision of the European Working Group on Sarcopenia

in Older People [5**] criteria provided the following
recommendations for the cut-off points of different
parameters: ALM <20 kg in men and<15 kg in women;
ALMI <7.0 kg/m2 in men and <5.5 kg/m2 in women;
(iv) the 2019 consensus of the Asian Working Group for
Sarcopenia [19] provided the following recommenda-
tions for the cut-off points: ALMI <7.0 kg/m2 in men
and <5.4 kg/m2 in women; (v) Walowski et al. [20]
recently identified ethnic-specific (i.e., Caucasian) body
mass indexedependent cut-off points for low LMI (only
the cut-off points for normal-weight and overweight

subjects are reported as follows: <15.6 kg/m2 and
<13.6 kg/m2 in normal-weight men and women,
respectively; <19.0 kg/m2 and <15.8 kg/m2 in over-
weight men and women, respectively). These authors
also found discrepancies among the published reference
Current Opinion in Pharmacology 2021, 57:148–156
values for different (i.e., obtained using different
methods and reference populations) parameters of lean
or muscle mass [20]. Consistently, it has previously been
observed that the prevalence of sarcopenia is highly
dependent on the applied diagnostic criteria [21e23];
(vi) Suetta et al. [24] identified ethnic-specific (i.e.,
Caucasian) cut-off points for low LM (i.e., values two
standard deviations below the sex-specific means

observed in Caucasian young adults) as LMI <14.58 kg/
m2 in men and <12.14 kg/m2 in women and ALMI
<6.60 kg/m2 in men and <5.03 kg/m2 in women. Given
that the cut-off thresholds derived in this study differed
from earlier reference data, the authors underlined the
importance of obtaining updated and local reference
materials [24].

Given that the ALM has a high muscle content that
constitutes a large fraction of the total body skeletal
muscle mass (TBSMM), different prediction equations

were developed for children (aged > 5 years and Tanner
stage �4) [25] and adults (through calibration analyses
performed between DXA-derived values of ALM and
CT- or MRI-derived values of TBSMM) [26e28] to
estimate the TBSMM value from the DXA-derived
ALM value (Table 1). The authors of all these predic-
tion equations suggested that they should prove useful
in assessing the skeletal muscle compartment in vivo and
that the relatively simple models (models 1 and 2 in
Table 1) should prove practical to apply in the clinical
setting [28]. Which of these equations is the most ac-

curate and precise for the estimation of TBSMM re-
mains to be established in further investigations. In
addition to the above-mentioned studies, a large
number of other comparative studies [29e33] were
conducted between DXA and MRI/CT and reported
good to strong correlations not only for whole-body scans
but also for regional scans. For example, Hansen et al.
[30] showed a good correlation between DXA-derived
midthigh LM (estimated for a 1.3-cm midthigh region
of interest) and CT-derived midthigh cross-sectional
area (determination coefficient of 0.73). More
recently, Tavoian et al. [32] showed in a group of young

athletes a strong correlation (correlation coefficient of
0.89) between DXA-derived thigh LM and five-slice
MRI-derived thigh muscle volume. Cameron et al.
[33] also showed a good correlation between DXA-
derived thigh LM and single-slice MRI-derived thigh
muscle mass (determination coefficient of 0.86). How-
ever, it is worth mentioning that DXA values of LM and
FM relate to the ‘molecular’ level of body composition,
whereas MRI and CT measures relate to the ‘tissue’
level [34]: therefore, LM and FM measured by DXA are
somewhat higher and lower, respectively, than the

corresponding values measured by cross-sectional im-
aging techniques [35]. Besides its accuracy for the
whole-body and regional body composition assessment,
other strengths of DXA are represented by the high
reproducibility and widespread availability.
www.sciencedirect.com
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Table 1

Prediction equations to estimate the total body skeletal muscle mass (TBSMM: kg) from the DXA-derived appendicular lean mass (ALM:
kg) [25–28] and from the ultrasound-derived muscle thickness [45].

Prediction equations for children and adolescents Reference

TBSMM = (1.115 * ALM) – 1.135 [25] model 1
TBSMM = (1.003 * ALM) + (0.039 * WEIGHT) – 1.315 [25] model 2
TBSMM = (0.483 * ALM) + (0.042 * WEIGHT) – (0.015 * HEIGHT) + (0.003 * ALM * HEIGHT) + 1.734 [25] model 3

Prediction equation for adults Reference

TBSMM = 1.33 * ALM [26]
TBSMM = (1.19 * ALM) – 1.0 [27] model 1
TBSMM = (1.17 * ALM) – (0.02 * AGE) + 0.35 [27] model 2
TBSMM = (1.13 * ALM) – (0.02 * AGE) + (0.61 * SEX) + 0.97 [27] model 3
TBSMM = (1.19 * ALM) – 1.65 [28] model 1
TBSMM = (1.18 * ALM) – (0.03 * AGE) - 0.14 [28] model 2
TBSMM = 10 ð0:0115,ALMÞ+ð�0:0034,AGEÞ+ð0:0001,AGE,ALMÞ+ð�01866,SEX Þ+ð0:0063,SEX,ALMÞ+ð0:0007,SEX,AGEÞ+RACE+ðRACE 0,ALMÞ+1:1932 [28] model 3
TBSMM (men) = 0.641 * 9 MT * HEIGHT – 12.087
TBSMM (women) = 0.594 * 9 MT * HEIGHT – 11.320

[45]

Equation coefficients. SEX, female = 0; male = 1; RACE, African American = 0.0350; Asian = −0.468; Caucasian = 0; RACE’, African American = −0.0015;
Asian = 0.0011; Caucasian = 0.
9 MT (cm): sum of the muscle thickness for nine sites (lateral forearm, anterior and posterior upper arm, abdomen, subscapula, anterior and posterior thigh,
anterior and posterior leg) of the right side of the body. HEIGHT (m); TBSMM, total body skeletal muscle mass.
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On the basis of its strengths and despite the previously
discussed weaknesses and limitations, DXA must be
considered the reference technique [16,36] for assess-
ing body composition (i.e. the amount and distribution
of LM and FM) in both clinical practice and research
studies performed in healthy subjects (e.g., athletes)

and in musculoskeletal disorders (sarcopenia, sarcopenic
obesity, disuse atrophy). Moreover, DXA can also be
used in patients with VML to assess the differences
between the affected and unaffected side. Panel B of
Figure 1 shows an example of segmental (right and left
thighs) assessment of LM in one representative healthy
subject showing comparable LM values between the
two thighs: similarly, LM asymmetry can be quantified
and longitudinally assessed also in patients with VML.

Muscle ultrasonography
Ultrasound has been used in medicine since the early
1950s, when Wild and Neal [37] and Dussik [38] showed
the ability of high-frequency ultrasonic waves to visualize
human tissues. The fundamental principle that creates
the ultrasound image is the echo: a transducer sends out
pulses of high-frequency sound waves and receives their
echoes. The image creation from all returning echoes is

based on the analysis of their acoustic and temporal
properties [39]. The sonographic appearance of a muscle
is fairly distinct and can easily be distinguished from
surrounding structures such skin, subcutaneous adipose
tissue, bone, nerves, and vessels [40].

Normal muscle tissue appears as a structure with low
echo intensity (i.e., it is black in appearance)
surrounded and divided by echogenic sheaths of con-
nective tissue known as epimysium (i.e. the envelope
www.sciencedirect.com
surrounding the whole muscle) and perimysium (i.e.
the sheath grouping muscle fibers into fascicles),
respectively. All superficial skeletal muscles can easily
be investigated with ultrasound, whereas deep muscles
can be more difficult to visualize because of the ab-
sorption and reflection of sound by superficial tissue

layers. Muscles can be investigated in both the sagittal
and axial plan and in different conditions (rest, iso-
metric contraction, dynamic movement) [39,40].
Figure 2 reports representative images of the tibialis
anterior and medial gastrocnemius muscles of a healthy
subject. In all the images, the boundaries of the muscle
are clearly visible as the epimysium is a highly echo-
genic (reflective) structure, the subcutaneous fat has a
low echo intensity, and fascicles are distinct and clearly
detectable (in sagittal images).

The optimal insonation of a muscle can be obtained by
ensuring the best representation of superficial and deep
aponeuroses, muscle fascicles, and bone boundary.
Aponeuroses and bones can easily be detected in images
acquired in both the axial and sagittal axis, whereas
fascicles can be detected in the sagittal images only. The
simplest use of ultrasound in evaluating skeletal mus-
cles is represented by the size assessment: the extent of
both muscle hypertrophy and atrophy can be quantified.
Care must be taken, however, when measuring muscle
size to ensure that the transducer pressure on the skin is

minimal (and constant), as the muscle can easily be
displaced (especially in resting conditions) with exces-
sive force on the transducer.

The main parameters adopted for the muscle size
assessment are represented by thickness and cross-
Current Opinion in Pharmacology 2021, 57:148–156

www.sciencedirect.com/science/journal/14714892


Figure 2

Sagittal (left panels) and axial (right panel) ultrasound scans of the tibialis anterior (top panels) and medial gastrocnemius (bottom panels) muscles for
one representative subject. Continuous white lines in all panels were used to calculate the muscle thickness (tibialis anterior, 3.0 cm in the sagittal image,
2.9 cm in the axial image; medial gastrocnemius, 2.3 cm in the sagittal image, 2.2 cm in the axial image), whereas white dashed lines delimit the regions
of interest used to quantify the tibialis anterior cross-sectional area (7.78 cm2) and the echo intensity of both muscles (tibialis anterior, 70.0 a.u.; medial
gastrocnemius, 58.0 a.u.). Proximal and distal portions of the muscles are indicated as PROX and DIST, respectively. Medial and lateral portions of the
muscles are indicated as MED and LAT, respectively.
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sectional area [40,41]. As shown in the representative

images of the tibialis anterior muscle reported in
Figure 2, the former parameter can be assessed in both
axial and sagittal images, whereas the latter parameter
can be assessed in axial images only and for a muscle
width equal or lower than the length of the ultrasound
transducer. We recently proposed muscle-specific cut-
off points for the ultrasound-based assessment of low
muscle thickness, and we found that the prevalence of
low muscle mass in older adults was highly dependent
on the muscle being investigated: in fact, proximal
muscles of the lower limb are more affected than distal

muscles [42]. Consistently, Agyapong-Badu et al. [43]
and Loenneke et al. [44] suggested that the ultrasound
Current Opinion in Pharmacology 2021, 57:148–156
estimate of the anterior thigh thickness can represent a

biomarker for musculoskeletal health as it enables to
quantify the relative amount of muscle and noncon-
tractile tissue. Therefore, this parameter could be useful
for the assessment of the age-related, disuse-related, or
disease-related loss of muscle mass. Similarly, limb
thickness asymmetry could also be useful in patients
with VML to quantify and longitudinally investigate the
extent of muscle loss and its recovery. Moreover, muscle
thickness can easily be measured in the same subject for
different body sites and the summed total thickness can
be used to estimate the TBSMM through the prediction

equation proposed by Sanada et al. [45] (Table 1)
that was recently validated by Abe et al. [46]. To our
www.sciencedirect.com
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knowledge, no previous study has been performed to
compare the TBSMM estimations obtained from the
ultrasound-derived muscle thickness and from the
DXA-derived ALM value.

Other parameters can also be obtained, for pennate
muscles, through the analysis of sagittal ultrasound
images such as muscle fascicle length and pennation

angle [41,47e51]. These are key parameters of muscle
architecture that has attracted considerable research
interest in recent years because of its relation with
muscle force-producing capability and energetics [49e
51*] and its relevance for the evaluation of the muscle
adaptations to training [52]. However, the ultrasound
assessment of muscle architecture is not yet a stan-
dardized technique and does not yet have validated cut-
off points [53]. Therefore, its application for the
detection of low muscle mass and muscle changes in the
clinical setting is currently limited.

Axial ultrasound images enable to investigate not only
the muscle cross-sectional area but also the muscle
echo intensity that has been proposed as a clinically
relevant noninvasive marker of muscle quality
[40,54,55]. This parameter increases with age and in
presence of neuromuscular and myopathic disorders
because of the age- and disease-related muscle
replacement by fat and fibrous tissue (i.e. myostea-
tosis) [40,56,57]. These tissues have an acoustic
impedance different from that of the surrounding

muscle: therefore, an increased number of reflecting
interfaces in the muscle gives the muscle a whiter
appearance (i.e. an increased echo intensity) [40].
Young et al. [58] developed muscle- and gender-
specific prediction equations to estimate the percent
intramuscular fat from muscle echo intensity and sub-
cutaneous fat thickness. They also found significant
associations between the ultrasound-derived estima-
tion of intramuscular fat and physical activity level
[59]. However, the ultrasound approach for estimating
Table 2

Strength and limitations of dual-energy X-ray absorptiometry (DXA) a

Properties and measurements DXA

Cost/time Strengths: easy to use, quick

Radiation Strengths: low radiation exposure
whole-body scan using a last-g

Accuracy and precision Strengths
Primary measurements for

lean/muscle mass
Total body lean mass (kg)

Appendicular lean mass (kg)

Assessment of myosteatosis Limitations
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the intramuscular fat needs further development and
validation. A limitation of the muscle echo intensity
assessment is that this quantitative variable is highly
dependent on the ultrasound scanner settings [60].
Therefore, different patients must be evaluated with
the same ultrasound device and with the same system-
setting parameters. Alternatively, a calibration proced-
ure [57,61] is required for echo intensity comparison

between different ultrasound devices. Despite this
limitation, the muscle echo intensity can be considered
a useful descriptor of the muscle quality and its
changes that may present a time course different from
the changes of muscle mass. Consistently, we found in
steroid myopathy patients with active and remitted
Cushing’s disease a muscle thickness comparable be-
tween the two groups and a higher echo intensity in the
former compared with the latter group [57]. On this
basis, we suggested that the muscle mass recovery after
resolution of the hypercortisolemic state seems longer

than the muscle structure recovery [57]. It may be
hypothesized that similar differences between the
muscle mass and structure recovery could also occur in
patients with VML. Thus, future studies are required
to investigate the extent and time evolution of muscle
thickness reduction and echo intensity increase in
patients with VML.

Conclusions
The progressive (in patients with sarcopenia) as well as
the rapid-onset (in patients with VML) loss of muscle
mass (and the associated changes of muscle quality)
result in neuromuscular function impairment that
significantly affects the state of health, especially in
elderly subjects, because it is associated with pain,
mobility disorders, increased risk of falls and fractures,
and impaired ability or disability to perform activities of
daily living [4,7]. Although not only peripheral

(muscular) but also central (neural) mechanisms can
underlie the age- and disease-related neuromuscular
function impairment, from a pathophysiological
nd ultrasonography (US) to assess lean and muscle mass.

US

Strengths: inexpensive, portable,
simple, safe, and quick

(~5 mSv for a
eneration densitometer)

Strengths: no radiation exposure

Strengths
Muscle thickness (cm)

Muscle cross-sectional area (cm2)
Muscle fascicle length (cm)
Fascicle pennation angle (�)
Echo intensity (a.u.)

Limitations
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perspective sarcopenia and VML can be considered an
‘organ failure’. In fact, previous authors proposed the
pathophysiologic constructs of ‘skeletal muscle function
deficit’ [62] and ‘muscle insufficiency’ [63]. Therefore,
the reductions in LM and muscle size may predict (and
may also precede) the organ failure-associated impair-
ment of neuromuscular function and should be quanti-
fied when a patient reports suggestive symptoms or

signs (i.e. feeling weak, slow walking speed, difficulty
rising from a chair, falling). Methods and approaches for
the assessment of LM quantity (and its distribution)
and muscle size (and its structure) continue to evolve
providing a wide array of choices for use in research and
clinical settings [12]. Table 2 summarizes the strengths
and limitations of the DXA and US methods discussed
in this review. The systematic incorporation of these
methods and approaches into routine examinations of
patients with sarcopenia and VML is recommended for
identifying patients at risk for neuromuscular

impairment-related comorbidities and evaluating the
effectiveness of pharmacological and rehabilitative in-
terventions. Consistently, the association between
skeletal muscle volume loss and poor prognosis has
already been observed in different patient populations
(i.e., cirrhotic and oncologic patients) [64e67] and de-
serves future investigations also in patients with VML.
In this patient population, beyond promoting de novo
regeneration of lost muscle tissue, amelioration of the
secondary pathophysiological changes induced by
muscle loss within the remaining musculature (i.e.,

disuse atrophy, myosteatosis) and surrounding tissues
(i.e., bone loss, increased subcutaneous and visceral fat)
may promote functional improvements.
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