1,253 research outputs found
A linear CO chemistry parameterization in a chemistry-transport model: evaluation and application to data assimilation
This paper presents an evaluation of a new linear parameterization valid for the troposphere and the stratosphere, based on a first order approximation of the carbon monoxide (CO) continuity equation. This linear scheme (hereinafter noted LINCO) has been implemented in the 3-D Chemical Transport Model (CTM) MOCAGE (MOdèle de Chimie Atmospherique Grande Echelle). First, a one and a half years of LINCO simulation has been compared to output obtained from a detailed chemical scheme output. The mean differences between both schemes are about ±25 ppbv (part per billion by volume) or 15% in the troposphere and ±10 ppbv or 100% in the stratosphere. Second, LINCO has been compared to diverse observations from satellite instruments covering the troposphere (Measurements Of Pollution In The Troposphere: MOPITT) and the stratosphere (Microwave Limb Sounder: MLS) and also from aircraft (Measurements of ozone and water vapour by Airbus in-service aircraft: MOZAIC programme) mostly flying in the upper troposphere and lower stratosphere (UTLS). In the troposphere, the LINCO seasonal variations as well as the vertical and horizontal distributions are quite close to MOPITT CO observations. However, a bias of ~−40 ppbv is observed at 700 Pa between LINCO and MOPITT. In the stratosphere, MLS and LINCO present similar large-scale patterns, except over the poles where the CO concentration is underestimated by the model. In the UTLS, LINCO presents small biases less than 2% compared to independent MOZAIC profiles. Third, we assimilated MOPITT CO using a variational 3D-FGAT (First Guess at Appropriate Time) method in conjunction with MOCAGE for a long run of one and a half years. The data assimilation greatly improves the vertical CO distribution in the troposphere from 700 to 350 hPa compared to independent MOZAIC profiles. At 146 hPa, the assimilated CO distribution is also improved compared to MLS observations by reducing the bias up to a factor of 2 in the tropics. This study confirms that the linear scheme is able to simulate reasonably well the CO distribution in the troposphere and in the lower stratosphere. Therefore, the low computing cost of the linear scheme opens new perspectives to make free runs and CO data assimilation runs at high resolution and over periods of several years
Effective flow properties of heterolithic, cross-bedded tidal sandstones: Part 1. Surface-based modeling
Tidal heterolithic sandstones are commonly characterized by millimeter- to centimeter-scale intercalations of mudstone and sandstone. Consequently, their effective flow properties are poorly predicted by (1) data that do not sample a representative volume or (2) models that fail to capture the complex three-dimensional architecture of sandstone and mudstone layers. We present a modeling approach in which surfaces are used to represent all geologic heterogeneities that control the spatial distribution of reservoir rock properties (surface-based modeling). The workflow uses template surfaces to represent heterogeneities classified by geometry instead of length scale. The topology of the template surfaces is described mathematically by a small number of geometric input parameters, and models are constructed stochastically. The methodology has been applied to generate generic, three-dimensional minimodels (9 m3 volume) of cross-bedded heterolithic sandstones representing trough and tabular cross-bedding with differing proportions of sandstone and mudstone, using conditioning data from two outcrop analogs from a tide-dominated deltaic deposit. The minimodels capture the cross-stratified architectures observed in outcrop and are suitable for flow simulation, allowing computation of effective permeability values for use in larger-scale models. We show that mudstone drapes in cross-bedded heterolithic sandstones significantly reduce effective permeability and also impart permeability anisotropy in the horizontal as well as vertical flow directions. The workflow can be used with subsurface data, supplemented by outcrop analog observations, to generate effective permeability values to be derived for use in larger-scale reservoir models. The methodology could be applied to the characterization and modeling of heterogeneities in other types of sandstone reservoirs
Polynomial growth of volume of balls for zero-entropy geodesic systems
The aim of this paper is to state and prove polynomial analogues of the
classical Manning inequality relating the topological entropy of a geodesic
flow with the growth rate of the volume of balls in the universal covering. To
this aim we use two numerical conjugacy invariants, the {\em strong polynomial
entropy } and the {\em weak polynomial entropy }. Both are
infinite when the topological entropy is positive and they satisfy
. We first prove that the growth rate of the volume of
balls is bounded above by means of the strong polynomial entropy and we show
that for the flat torus this inequality becomes an equality. We then study the
explicit example of the torus of revolution for which we can give an exact
asymptotic equivalent of the growth rate of volume of balls, which we relate to
the weak polynomial entropy.Comment: 22 page
Adaptive density estimation for stationary processes
We propose an algorithm to estimate the common density of a stationary
process . We suppose that the process is either or
-mixing. We provide a model selection procedure based on a generalization
of Mallows' and we prove oracle inequalities for the selected estimator
under a few prior assumptions on the collection of models and on the mixing
coefficients. We prove that our estimator is adaptive over a class of Besov
spaces, namely, we prove that it achieves the same rates of convergence as in
the i.i.d framework
Combined assimilation of IASI and MLS observations to constrain tropospheric and stratospheric ozone in a global chemical transport model
Accurate and temporally resolved fields of free-troposphere ozone are of
major importance to quantify the intercontinental transport of pollution and
the ozone radiative forcing. We consider a global chemical transport model
(MOdèle de Chimie Atmosphérique à Grande Échelle, MOCAGE) in
combination with a linear ozone chemistry scheme to examine the impact of
assimilating observations from the Microwave Limb Sounder (MLS) and the
Infrared Atmospheric Sounding Interferometer (IASI). The assimilation of the
two instruments is performed by means of a variational algorithm (4D-VAR) and
allows to constrain stratospheric and tropospheric ozone simultaneously. The
analysis is first computed for the months of August and November 2008 and
validated against ozonesonde measurements to verify the presence of
observations and model biases. Furthermore, a longer analysis of 6 months
(July–December 2008) showed that the combined assimilation of MLS and IASI is
able to globally reduce the uncertainty (root mean square error, RMSE) of the
modeled ozone columns from 30 to 15% in the
upper troposphere/lower stratosphere (UTLS, 70–225 hPa). The assimilation of
IASI tropospheric ozone observations (1000–225 hPa columns, TOC – tropospheric O<sub>3</sub> column)
decreases the RMSE of the model from 40 to 20% in the tropics
(30° S–30° N), whereas it is not effective at higher latitudes.
Results are confirmed by a comparison with additional ozone data sets like the
Measurements of OZone and wAter vapour by aIrbus in-service airCraft (MOZAIC)
data, the Ozone Monitoring Instrument (OMI) total ozone columns and several
high-altitude surface measurements. Finally, the analysis is found to be
insensitive to the assimilation parameters. We conclude that the combination
of a simplified ozone chemistry scheme with frequent satellite observations
is a valuable tool for the long-term analysis of stratospheric and
free-tropospheric ozone
Midlatitude stratosphere - troposphere exchange as diagnosed by MLS O3 and MOPITT CO assimilated fields
International audienceThis paper presents a comprehensive characterization of a very deep stratospheric intrusion which occurred over the British Isles on 15 August 2007. The signature of this event is diagnosed using ozonesonde measurements over Lerwick, UK (60.14 N, 1.19 W) and is also well characterized using meteorological analyses from the global operational weather prediction model of Météo-France, ARPEGE. Modelled as well as assimilated fields of both ozone (O3) and carbon monoxide (CO) have been used in order to better document this event. O3 and CO from Aura/MLS and Terra/MOPITT instruments, respectively, are assimilated into the three-dimensional chemical transport model MOCAGE of Météo-France using a variational 3-DFGAT (First Guess at Appropriate Time) method. The validation of O3 and CO assimilated fields is done using selfconsistency diagnostics and by comparison with independent observations such as MOZAIC (O3 and CO), AIRS (CO) and OMI (O3). It particularly shows in the upper troposphere and lower stratosphere region that the assimilated fields are closer to MOZAIC than the free model run. The O3 bias between MOZAIC and the analyses is −11.5 ppbv with a RMS of 22.4 ppbv and a correlation coefficient of 0.93, whereas between MOZAIC and the free model run, the corresponding values are 33 ppbv, 38.5 ppbv and 0.83, respectively. In the same way, for CO, the bias, RMS and correlation coefficient between MOZAIC and the analyses are −3.16 ppbv, 13 ppbv and 0.79, respectively, whereas between MOZAIC and the free model run, the corresponding values are 33 ppbv, 38.5 ppbv and 0.83, respectively. In the same way, for CO, the bias, RMS and correlation coefficient between MOZAIC and the analyses are −3.16 ppbv, 13 ppbv and 0.79, respectively, whereas between MOZAIC and the free model they are 6.3 ppbv, 16.6 ppbv and 0.71, respectively. The paper also presents a demonstration of the capability of O3 and CO assimilated fields to better describe a stratosphere-troposphere exchange (STE) event in comparison with the free run modelled O3 and CO fields. Although the assimilation of MLS data improves the distribution of O3 above the tropopause compared to the free model run, it is not sufficient to reproduce the STE event well. Assimilated MOPITT CO allows a better qualitative description of the stratospheric intrusion event. The MOPITT CO analyses appear more promising than the MLS O3 analyses in terms of their ability to capture a deep STE event. Therefore, the results of this study open the perspectives for using MOPITT CO in the STE studies
Effect of training-detraining phases of multicomponent exercises and BCAA supplementation on inflammatory markers and albumin levels in frail older persons
Nowadays, it is accepted that the regular practice of exercise and branched-chain amino acids supplementation (BCAAs) can benefit the immune responses in older persons, prevent the occurrence of physical frailty (PF), cognitive decline, and aging-related comorbidities. However, the impact of their combination (as non-pharmacological interventions) in albumin and the inflammatory markers is not fully understood. Therefore, we investigated the effect of a 40-week multifactorial intervention [MIP, multicomponent exercise (ME) associated or not with BCAAs] on plasma levels of inflammatory markers and albumin in frail older persons (≥75 years old) living at residential care homes (RCH). This study consisted of a prospective, naturalistic, controlled clinical trial with four arms of multifactorial and experimental (interventions-wahshout-interventions) design. The intervention groups were ME + BCAAs (n = 8), ME (n = 7), BCAAs (n = 7), and control group (n = 13). Lower limb muscle-strength, cognitive profile, and PF tests were concomitantly evaluated with plasma levels of albumin, anti-and pro-inflammatory cytokines [Interleukin-10 (IL-10) and Tumor Necrosis Factor-alpha (TNF-α) respectively], TNF-α/IL-10 ratio, and myeloperoxidase (MPO) activity at four different time-points: Baseline (T1), after 16 weeks of multifactorial intervention (T2), then after a subsequent 8 weeks washout period (T3) and finally, after an additional 16 weeks of multifactorial intervention (T4). Improvement of cognitive profile and muscle strength-related albumin levels, as well as reduction in the TNF-α levels were found particularly in ME plus BCAAs group. No significant variations were observed over time for TNF-α/IL-10 ratio or MPO activity. Overall, the study showed that MIP triggered slight alterations in the inflammatory and physical function of the frail older participants, which could provide independence and higher quality of life for this population
Effect of a 40-weeks multicomponent exercise program and branched chain amino acids supplementation on functional fitness and mental health in frail older persons
BACKGROUND: The ageing process implies several physiological and psychological changes that hence affect the general health, mood states, and quality of life of older persons. Exercise and adequate nutrition are renowned non-pharmacological strategies that significantly delay and alleviate the adverse consequences of the ageing process. This study aimed to evaluate the effects of branched-chain amino acid (BCAA) supplementation and a multicomponent exercise program (ME) on the physical frailty and mood states of older persons. METHODS: 35 participants (women and men; 83 ± 3 years old) from residential care homes were submitted to a 40-week exercise-washout-retraining intervention (16 weeks of the elastic band based exercise and/or supplementation, 8 weeks of washout, and 16 weeks of multicomponent exercise and/or resupplementing), with or without BCAA supplementation. The experimental groups were: (i) ME plus BCAA supplementation (ME+BCAA); (ii) ME; (iii) BCAA supplementation (BCAA), and (iv) control group (CG). Fried's phenotype was used to assess frailty prevalence. Geriatric Depression Scale (GDS), Profile of Mood State (POMS), Mini-Mental State Examination (MMSE), were used to access mental health and cognition. The Short Physical Performance Battery (SPPB) was used to access functional capacity. Salivary testosterone levels (ST) were also determined to access the anabolic effects of the intervention. RESULTS: Exercise was effective in improving functional capacity and prevented the increase in frailty that occurred in the non-exercising CG, where the frailty scores increased over time (p < 0.01). BCAAs supplement alone had no impact on functional fitness, but in a short time (16 weeks) contributed to diminishing frailty and combined with exercise may have the potential to reduce the effect of a detraining period on functional capacity. Salivary testosterone levels correlated with handgrip strength and could be a useful indicator of susceptibility to frailty. No effects were found for mood states, cognition, and depression. CONCLUSION: This study showed that a long-term exercise program, independent of being multicomponent or strength elastic band-based, was effective in improving functional capacity and prevented an increase in frailty in frail and pre-frail older persons living in residential care homes
- …