41 research outputs found

    Cell therapy in Huntington's disease: taking stock of past studies to move the field forward

    Get PDF
    Huntington's disease (HD) is a rare inherited neurodegenerative disease that manifests mostly in adulthood with progressive cognitive, behavioral, and motor dysfunction. Neuronal loss occurs predominantly in the striatum but also extends to other brain regions, notably the cortex. Most patients die around 20 years after motor onset, although there is variability in the rate of progression and some phenotypic heterogeneity. The most advanced experimental therapies currently are huntingtin‐lowering strategies, some of which are in stage 3 clinical trials. However, even if these approaches are successful, it is unlikely that they will be applicable to all patients or will completely halt continued loss of neural cells in all cases. On the other hand, cellular therapies have the potential to restore atrophied tissues and may therefore provide an important complementary therapeutic avenue. Pilot studies of fetal cell grafts in the 2000s reported the most dramatic clinical improvements yet achieved for this disease, but subsequent studies have so far failed to identify methodology to reliably reproduce these results. Moving forward, a major challenge will be to generate suitable donor cells from (nonfetal) cell sources, but in parallel there are a host of procedural and trial design issues that will be important for improving reliability of transplants and so urgently need attention. Here, we consider findings that have emerged from clinical transplant studies in HD to date, in particular new findings emerging from the recent multicenter intracerebral transplant HD study, and consider how these data may be used to inform future cell therapy trials

    Overlapping Signatures of Chronic Pain in the DNA Methylation Landscape of Prefrontal Cortex and Peripheral T Cells

    Full text link
    We tested the hypothesis that epigenetic mechanisms in the brain and the immune system are associated with chronic pain. Genome-wide DNA methylation assessed in 9 months post nerve-injury (SNI) and Sham rats, in the prefrontal cortex (PFC) as well as in T cells revealed a vast difference in the DNA methylation landscape in the brain between the groups and a remarkable overlap (72%) between differentially methylated probes in T cells and prefrontal cortex. DNA methylation states in the PFC showed robust correlation with pain score of animals in several genes involved in pain. Finally, only 11 differentially methylated probes in T cells were sufficient to distinguish SNI or Sham individual rats. This study supports the plausibility of DNA methylation involvement in chronic pain and demonstrates the potential feasibility of DNA methylation markers in T cells as noninvasive biomarkers of chronic pain susceptibility

    A new approach to digitized cognitive monitoring: validity of the SelfCog in Huntington's disease

    Get PDF
    Cognitive deficits represent a hallmark of neurodegenerative diseases, but evaluating their progression is complex. Most current evaluations involve lengthy paper-and-pencil tasks which are subject to learning effects dependent on the mode of response (motor or verbal), the countries’ language or the examiners. To address these limitations, we hypothesized that applying neuroscience principles may offer a fruitful alternative. We thus developed the SelfCog, a digitized battery that tests motor, executive, visuospatial, language and memory functions in 15 min. All cognitive functions are tested according to the same paradigm, and a randomization algorithm provides a new test at each assessment with a constant level of difficulty. Here, we assessed its validity, reliability and sensitivity to detect decline in early-stage Huntington’s disease in a prospective and international multilingual study (France, the UK and Germany). Fifty-one out of 85 participants with Huntington’s disease and 40 of 52 healthy controls included at baseline were followed up for 1 year. Assessments included a comprehensive clinical assessment battery including currently standard cognitive assessments alongside the SelfCog. We estimated associations between each of the clinical assessments and SelfCog using Spearman’s correlation and proneness to retest effects and sensitivity to decline through linear mixed models. Longitudinal effect sizes were estimated for each cognitive score. Voxel-based morphometry and tract-based spatial statistics analyses were conducted to assess the consistency between performance on the SelfCog and MRI 3D-T1 and diffusion-weighted imaging in a subgroup that underwent MRI at baseline and after 12 months. The SelfCog detected the decline of patients with Huntington’s disease in a 1-year follow-up period with satisfactory psychometric properties. Huntington’s disease patients are correctly differentiated from controls. The SelfCog showed larger effect sizes than the classical cognitive assessments. Its scores were associated with grey and white matter damage at baseline and over 1 year. Given its good performance in longitudinal analyses of the Huntington’s disease cohort, it should likely become a very useful tool for measuring cognition in Huntington’s disease in the future. It highlights the value of moving the field along the neuroscience principles and eventually applying them to the evaluation of all neurodegenerative diseases

    Cognitive decline in Huntington's disease in the Digitalized Arithmetic Task (DAT)

    Get PDF
    Background Efficient cognitive tasks sensitive to longitudinal deterioration in small cohorts of Huntington’s disease (HD) patients are lacking in HD research. We thus developed and assessed the digitized arithmetic task (DAT), which combines inner language and executive functions in approximately 4 minutes. Methods We assessed the psychometric properties of DAT in three languages, across four European sites, in 77 early-stage HD patients (age: 52 ± 11 years; 27 females), and 57 controls (age: 50 ± 10, 31 females). Forty-eight HD patients and 34 controls were followed up to one year with 96 participants who underwent MRI brain imaging (HD patients = 46) at baseline and 50 participants (HD patients = 22) at one year. Linear mixed models and Pearson correlations were used to assess associations with clinical assessment. Results At baseline, HD patients were less accurate (p = 0.0002) with increased response time (p<0.0001) when compared to DAT in controls. Test-retest reliability in HD patients ranged from good to excellent for response time (range: 0.63–0.79) and from questionable to acceptable for accuracy (range: r = 0.52–0.69). Only DAT, the Mattis Dementia Rating Scale, the Symbol Digit Modalities Test, and Total Functional Capacity scores were able to detect a decline within a one-year follow-up in HD patients (all p< 0.05). In contrast with all the other cognitive tasks, DAT correlated with striatal atrophy over time (p = 0.037) but not with motor impairment. Conclusions DAT is fast, reliable, motor-free, applicable in several languages, and able to unmask cognitive decline correlated with striatal atrophy in small cohorts of HD patients. This likely makes it a useful endpoint in future trials for HD and other neurodegenerative diseases

    Objectively characterizing Huntington's disease using a novel upper limb dexterity test.

    Get PDF
    Background:The Clinch Token Transfer Test (C3t) is a bi-manual coin transfer task that incorporates cognitive tasks to add complexity. This study explored the concurrent and convergent validity of the C3t as a simple, objective assessment of impairment that is reflective of disease severity in Huntington's, that is not reliant on clinical expertise for administration. Methods:One-hundred-and-five participants presenting with pre-manifest (n = 16) or manifest (TFC-Stage-1 n = 39; TFC-Stage-2 n = 43; TFC-Stage-3 n = 7) Huntington's disease completed the Unified Huntington's Disease Rating Scale and the C3t at baseline. Of these, thirty-three were followed up after 12 months. Regression was used to estimate baseline individual and composite clinical scores (including cognitive, motor, and functional ability) using baseline C3t scores. Correlations between C3t and clinical scores were assessed using Spearman's R and visually inspected in relation to disease severity using scatterplots. Effect size over 12 months provided an indication of longitudinal behaviour of the C3t in relation to clinical measures.Results: Baseline C3t scores predicted baseline clinical scores to within 9-13% accuracy, being associated with individual and composite clinical scores. Changes in C3t scores over 12 months were small ([Formula: see text] ≤ 0.15) and mirrored the change in clinical scores. Conclusion: The C3t demonstrates promise as a simple, easy to administer, objective outcome measure capable of predicting impairment that is reflective of Huntington's disease severity and offers a viable solution to support remote clinical monitoring. It may also offer utility as a screening tool for recruitment to clinical trials given preliminary indications of association with the prognostic index normed for Huntington's disease

    Mycobacterium malmoense infection in an immunocompetent patient

    Full text link
    peer reviewedWe report the case of a 57-year-old patient in whom we found a pulmonary infection due to Mycobacterium malmoense. This patient had no immunodeficiency and responded quite rapidly to anti-tuberculous therapy. He was treated for 6 months by levofloxacine, myambutol, and nicotibine, followed by 3 months of clarithromycine, levofloxacine and myambutol. The patient improved clinically to become asymptomatic and the cavitary lesion shown at the CT-scan slightly decreased. The patient is still currently treated by clarithromycine and ciproxine

    Le GPR88, un membre de la famille des récepteurs couplés aux protéines G, est un modulateur de la neurotransmission et un facteur épigénétique

    No full text
    Mon travail de thèse a consisté à caractériser un récepteur couplé aux protéines G orphelin, le GPR88. Il est exprimé transitoirement durant l'embryogenèse en périphérie. Cependant, il présente une expression majoritaire cérébrale stable et neuronale. Le GPR88 est particulièrement concentré dans le striatum où son expression est restreinte aux neurones de projection et modulée par la dopamine et par l'activité des afférences corticostriatales. Nos résultats suggèrent d'importantes fonctions du GPR88 dans la régulation des activités motrices. Nous avons également découvert que le GPR88 est un facteur épigénétique dans les aires corticales humaines et de rat. Dans le cortex, la protéine entière du GPR88 est adressée, grâce à une séquence de sa partie C-terminale, à l'intérieur des noyaux où il s'associe avec la chromatine transcriptionnellement active. Nous avons montré que la forme intranucléaire du GPR88 module la conformation de la chromatine et influence la différenciation neuronale.PARIS-BIUSJ-Thèses (751052125) / SudocPARIS-BIUSJ-Physique recherche (751052113) / SudocSudocFranceF

    DNA methylation and transcription onset in the brain

    No full text
    Aim: The goal of this study was to test the state of methylation of transcription start positions in DNA that are actively involved in transcription. Materials &amp; methods: We used sequential ChIP-bisulfite-sequencing with an antibody to RNpolII-PS5 to map the state of methylation of actively transcribing transcription start sites (TSS). Results: TSS that RNApolII-PS5 physically bind to, are ubiquitously unmethylated. TSS that appear to be both heavily methylated and transcriptionally active are truly a mixture of unmethylated TSS with bound RNApolII-PS5 in some nuclei and unbound methylated TSS in other nuclei. Conclusion: TSS DNA methylation is universally inconsistent with transcription onset and could therefore serve as a digital count of the fraction of nuclei with methylation-silenced TSS. </jats:p
    corecore