305 research outputs found

    Optimal Quantum Cloning Machines

    Get PDF
    We present Quantum Cloning Machines (QCM) that transform N identical qubits into M>NM>N identical copies and we prove that the fidelity (quality) of these copies is optimal. The connection between cloning and measurement is discussed in detail. When the number of clones M tends towards infinity, the fidelity of each clone tends towards the optimal fidelity that can be obtained by a measurement on the input qubits. More generally, the QCM are universal devices to translate quantum information into classical information.Comment: 4 pages, Latex, 1 postscript figure, (very) minor modification

    Collective versus local measurements on two parallel or antiparallel spins

    Get PDF
    We give a complete analysis of covariant measurements on two spins. We consider the cases of two parallel and two antiparallel spins, and we consider both collective measurements on the two spins, and measurements which require only Local Quantum Operations and Classical Communication (LOCC). In all cases we obtain the optimal measurements for arbitrary fidelities. In particular we show that if the aim is determine as well as possible the direction in which the spins are pointing, it is best to carry out measurements on antiparallel spins (as already shown by Gisin and Popescu), second best to carry out measurements on parallel spins and worst to be restricted to LOCC measurements. If the the aim is to determine as well as possible a direction orthogonal to that in which the spins are pointing, it is best to carry out measurements on parallel spins, whereas measurements on antiparallel spins and LOCC measurements are both less good but equivalent.Comment: 4 pages; minor revision

    Black Hole Horizon Fluctuations

    Get PDF
    It is generally admitted that gravitational interactions become large at an invariant distance of order 11 from the black hole horizon. We show that due to the ``atmosphere'' of high angular particles near the horizon strong gravitational interactions already occur at an invariant distance of the order of M3\sqrt[3]{M}. The implications of these results for the origin of black hole radiation, the meaning of black hole entropy and the information puzzle are discussed.Comment: Latex, 22 pages (minor corrections and precisions added

    Communication of Spin Directions with Product States and Finite Measurements

    Get PDF
    Total spin eigenstates can be used to intrinsically encode a direction, which can later be decoded by means of a quantum measurement. We study the optimal strategy that can be adopted if, as is likely in practical applications, only product states of NN-spins are available. We obtain the asymptotic behaviour of the average fidelity which provides a proof that the optimal states must be entangled. We also give a prescription for constructing finite measurements for general encoding eigenstates.Comment: 4 pages, minor changes, version to appear in PR

    Optimal strategies for sending information through a quantum channel

    Get PDF
    Quantum states can be used to encode the information contained in a direction, i.e., in a unit vector. We present the best encoding procedure when the quantum state is made up of NN spins (qubits). We find that the quality of this optimal procedure, which we quantify in terms of the fidelity, depends solely on the dimension of the encoding space. We also investigate the use of spatial rotations on a quantum state, which provide a natural and less demanding encoding. In this case we prove that the fidelity is directly related to the largest zeros of the Legendre and Jacobi polynomials. We also discuss our results in terms of the information gain.Comment: 4 pages, RevTex, final version to appear in Phys.Rev.Let

    Compression of quantum measurement operations

    Full text link
    We generalize recent work of Massar and Popescu dealing with the amount of classical data that is produced by a quantum measurement on a quantum state ensemble. In the previous work it was shown how spurious randomness generally contained in the outcomes can be eliminated without decreasing the amount of knowledge, to achieve an amount of data equal to the von Neumann entropy of the ensemble. Here we extend this result by giving a more refined description of what constitute equivalent measurements (that is measurements which provide the same knowledge about the quantum state) and also by considering incomplete measurements. In particular we show that one can always associate to a POVM with elements a_j, an equivalent POVM acting on many independent copies of the system which produces an amount of data asymptotically equal to the entropy defect of an ensemble canonically associated to the ensemble average state and the initial measurement (a_j). In the case where the measurement is not maximally refined this amount of data is strictly less than the von Neumann entropy, as obtained in the previous work. We also show that this is the best achievable, i.e. it is impossible to devise a measurement equivalent to the initial measurement (a_j) that produces less data. We discuss the interpretation of these results. In particular we show how they can be used to provide a precise and model independent measure of the amount of knowledge that is obtained about a quantum state by a quantum measurement. We also discuss in detail the relation between our results and Holevo's bound, at the same time providing a new proof of this fundamental inequality.Comment: RevTeX, 13 page

    Quantum Computing on Lattices using Global Two-Qubit Gate

    Full text link
    We study the computation power of lattices composed of two dimensional systems (qubits) on which translationally invariant global two-qubit gates can be performed. We show that if a specific set of 6 global two qubit gates can be performed, and if the initial state of the lattice can be suitably chosen, then a quantum computer can be efficiently simulatedComment: 9 page

    Minimal optimal generalized quantum measurements

    Get PDF
    Optimal and finite positive operator valued measurements on a finite number NN of identically prepared systems have been presented recently. With physical realization in mind we propose here optimal and minimal generalized quantum measurements for two-level systems. We explicitly construct them up to N=7 and verify that they are minimal up to N=5. We finally propose an expression which gives the size of the minimal optimal measurements for arbitrary NN.Comment: 9 pages, Late

    Non locality, closing the detection loophole and communication complexity

    Get PDF
    It is shown that the detection loophole which arises when trying to rule out local realistic theories as alternatives for quantum mechanics can be closed if the detection efficiency η\eta is larger than ηd1/220.0035d\eta \geq d^{1/2} 2^{-0.0035d} where dd is the dimension of the entangled system. Furthermore it is argued that this exponential decrease of the detector efficiency required to close the detection loophole is almost optimal. This argument is based on a close connection that exists between closing the detection loophole and the amount of classical communication required to simulate quantum correlation when the detectors are perfect.Comment: 4 pages Latex, minor typos correcte

    Violation of local realism vs detection efficiency

    Full text link
    We put bounds on the minimum detection efficiency necessary to violate local realism in Bell experiments. These bounds depends of simple parameters like the number of measurement settings or the dimensionality of the entangled quantum state. We derive them by constructing explicit local-hidden variable models which reproduce the quantum correlations for sufficiently small detectors efficiency.Comment: 6 pages, revtex. Modifications in the discussion for many parties in section 3, small erros and typos corrected, conclusions unchange
    corecore