7 research outputs found

    An Observational Study of Molecular Dust Precursors in Circumstellar Envelopes

    Full text link
    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Física Teórica. Fecha de lectura: 18-12-2020CSIC. Instituto de Física Fundamental (IFF

    Discovery of the elusive carbonic acid (HOCOOH) in space

    Get PDF
    After a quarter century since the detection of the last interstellar carboxylic acid, acetic acid (CH3_3COOH), we report the discovery of a new one, the cis-trans form of carbonic acid (HOCOOH), toward the Galactic Center molecular cloud G+0.693-0.027. HOCOOH stands as the first interstellar molecule containing three oxygen atoms and also the third carboxylic acid detected so far in the interstellar medium. Albeit the limited available laboratory measurements (up to 65 GHz), we have also identified several pairs of unblended lines directly in the astronomical data (between 75-120 GHz), which allowed us to slightly improve the set of spectroscopic constants. We derive a column density for cis-trans HOCOOH of NN = (6.4 ±\pm 0.4) ×\times 1012^{12} cm−2^{-2}, which yields an abundance with respect to molecular H2_2 of 4.7 ×\times 10−11^{-11}. Meanwhile, the extremely low dipole moment (about fifteen times lower) of the lower-energy conformer, cis-cis HOCOOH, precludes its detection. We obtain an upper limit to its abundance with respect to H2_2 of ≀\leq 1.2 ×\times10−9^{-9}, which suggests that cis-cis HOCOOH might be fairly abundant in interstellar space, although it is nearly undetectable by radio astronomical observations. We derive a cis-cis/cis-trans ratio ≀\leq 25, consistent with the smaller energy difference between both conformers compared with the relative stability of trans- and cis-formic acid (HCOOH). Finally, we compare the abundance of these acids in different astronomical environments, further suggesting a relationship between the chemical content found in the interstellar medium and the chemical composition of the minor bodies of the Solar System, which could be inherited during the star formation process.Comment: Accepted for publication in The Astrophysical Journa

    First glycine isomer detected in the interstellar medium: glycolamide (NH2_2C(O)CH2_2OH)

    Full text link
    We report the first detection in the interstellar medium of a C2_2H5_5O2_2N isomer: synsyn-glycolamide (NH2_2C(O)CH2_2OH). The exquisite sensitivity at sub-mK levels of an ultra-deep spectral survey carried out with the Yebes 40m and IRAM 30m telescopes towards the G+0.693-0.027 molecular cloud have allowed us to unambiguously identify multiple transitions of this species. We derived a column density of (7.4 ±\pm 0.7)×\times1012^{12} cm−2^{-2}, which implies a molecular abundance with respect to H2_2 of 5.5×\times10−11^{-11}. The other C2_2H5_5O2_2N isomers, including the higher-energy antianti conformer of glycolamide, and two conformers of glycine, were not detected. The upper limit derived for the abundance of glycine indicates that this amino acid is surely less abundant than its isomer glycolamide in the ISM. The abundances of the C2_2H5_5O2_2N isomers cannot be explained in terms of thermodynamic equilibrium, and thus chemical kinetics need to be invoked. While the low abundance of glycine might not be surprising, based on the relative low abundances of acids in the ISM compared to other compounds (e.g. alcohols, aldehydes or amines), several chemical pathways can favour the formation of its isomer glycolamide. It can be formed through radical-radical reactions on the surface of dust grains. The abundances of these radicals can be significantly boosted in an environment affected by a strong ultraviolet field induced by cosmic rays, such as that expected in G+0.693-0.027. Therefore, as shown by several recent molecular detections towards this molecular cloud, it stands out as the best target to discover new species with carbon, oxygen and nitrogen with increasing chemical complexity.Comment: Accepted in The Astrophysical Journal Letter

    Precursors of the RNA-world in space: Detection of (ZZ)-1,2-ethenediol in the interstellar medium, a key intermediate in sugar formation

    Get PDF
    We present the first detection of (ZZ)-1,2-ethenediol, (CHOH)2_2, the enol form of glycolaldehyde, in the interstellar medium towards the G+0.693-0.027 molecular cloud located in the Galactic Center. We have derived a column density of (1.8±\pm0.1)×\times1013^{13} cm−2^{-2}, which translates into a molecular abundance with respect to molecular hydrogen of 1.3×\times10−10^{-10}. The abundance ratio between glycolaldehyde and (ZZ)-1,2-ethenediol is ∌\sim5.2. We discuss several viable formation routes through chemical reactions from precursors such as HCO, H2_2CO, CHOH or CH2_2CHOH. We also propose that this species might be an important precursor in the formation of glyceraldehyde (HOCH2_2CHOHCHO) in the interstellar medium through combination with the hydroxymethylene (CHOH) radical.Comment: Accepted for publication in The Astrophysical Journal Letter

    First Glycine Isomer Detected in the Interstellar Medium: Glycolamide (NH2C(O)CH2OH)

    Get PDF
    We report the first detection in the interstellar medium (ISM) of a C _2 H _5 O _2 N isomer: syn -glycolamide (NH _2 C(O)CH _2 OH). The exquisite sensitivity at sub-mK levels of an ultradeep spectral survey carried out with the Yebes 40 m and IRAM 30 m telescopes toward the G+0.693–0.027 molecular cloud has allowed us to unambiguously identify multiple transitions of this species. We derived a column density of (7.4 ± 0.7) × 10 ^12 cm ^−2 , which implies a molecular abundance with respect to H _2 of 5.5 × 10 ^−11 . The other C _2 H _5 O _2 N isomers, including the higher-energy anti conformer of glycolamide and two conformers of glycine, were not detected. The upper limit derived for the abundance of glycine indicates that this amino acid is surely less abundant than its isomer glycolamide in the ISM. The abundances of the C _2 H _5 O _2 N isomers cannot be explained in terms of thermodynamic equilibrium; thus, chemical kinetics need to be invoked. While the low abundance of glycine might not be surprising, based on the relative low abundances of acids in the ISM compared to other compounds (e.g., alcohols, aldehydes, or amines), several chemical pathways can favor the formation of its isomer glycolamide. It can be formed through radical–radical reactions on the surface of dust grains. The abundances of these radicals can be significantly boosted in an environment affected by a strong ultraviolet field induced by cosmic rays, such as that expected in G+0.693–0.027. Therefore, as shown by several recent molecular detections toward this molecular cloud, it stands out as the best target to discover new species with carbon, oxygen, and nitrogen with increasing chemical complexity
    corecore