1,056 research outputs found
Spins in the Vortices of a High Temperature Superconductor
Neutron scattering is used to characterise the magnetism of the vortices for
the optimally doped high-temperature superconductor La(2-x)Sr(x)CuO(4)
(x=0.163) in an applied magnetic field. As temperature is reduced, low
frequency spin fluctuations first disappear with the loss of vortex mobility,
but then reappear. We find that the vortex state can be regarded as an
inhomogeneous mixture of a superconducting spin fluid and a material containing
a nearly ordered antiferromagnet. These experiments show that as for many other
properties of cuprate superconductors, the important underlying microscopic
forces are magnetic
Hidden Orbital Order in
When matter is cooled from high temperatures, collective instabilities
develop amongst its constituent particles that lead to new kinds of order. An
anomaly in the specific heat is a classic signature of this phenomenon. Usually
the associated order is easily identified, but sometimes its nature remains
elusive. The heavy fermion metal is one such example, where the
order responsible for the sharp specific heat anomaly at has
remained unidentified despite more than seventeen years of effort. In
, the coexistence of large electron-electron repulsion and
antiferromagnetic fluctuations in leads to an almost incompressible
heavy electron fluid, where anisotropically paired quasiparticle states are
energetically favored. In this paper we use these insights to develop a
detailed proposal for the hidden order in . We show that
incommensurate orbital antiferromagnetism, associated with circulating currents
between the uranium ions, can account for the local fields and entropy loss
observed at the transition; furthermore we make detailed predictions for
neutron scattering measurements
Electronic Liquid Crystal Phases of a Doped Mott Insulator
The character of the ground state of an antiferromagnetic insulator is
fundamentally altered upon addition of even a small amount of charge. The added
charges agglomerate along domain walls at which the spin correlations, which
may or may not remain long-ranged, suffer a phase shift. In two
dimensions, these domain walls are ``stripes'' which are either insulating, or
conducting, i.e. metallic rivers with their own low energy degrees of freedom.
However, quasi one-dimensional metals typically undergo a transition to an
insulating ordered charge density wave (CDW) state at low temperatures. Here it
is shown that such a transition is eliminated if the zero-point energy of
transverse stripe fluctuations is sufficiently large in comparison to the CDW
coupling between stripes. As a consequence, there exist novel,
liquid-crystalline low-temperature phases -- an electron smectic, with
crystalline order in one direction, but liquid-like correlations in the other,
and an electron nematic with orientational order but no long-range positional
order. These phases, which constitute new states of matter, can be either high
temperature supeconductors or two-dimensional anisotropic ``metallic''
non-Fermi liquids. Evidence for the new phases may already have been obtained
by neutron scattering experiments in the cuprate superconductor,
La_{1.6-x}Nd_{0.4}Sr_xCuO_{4}.Comment: 5 pages in RevTex with two figures in ep
Spin chirality on a two-dimensional frustrated lattice
The collective behavior of interacting magnetic moments can be strongly
influenced by the topology of the underlying lattice. In geometrically
frustrated spin systems, interesting chiral correlations may develop that are
related to the spin arrangement on triangular plaquettes. We report a study of
the spin chirality on a two-dimensional geometrically frustrated lattice. Our
new chemical synthesis methods allow us to produce large single crystal samples
of KFe3(OH)6(SO4)2, an ideal Kagome lattice antiferromagnet. Combined
thermodynamic and neutron scattering measurements reveal that the phase
transition to the ordered ground-state is unusual. At low temperatures,
application of a magnetic field induces a transition between states with
different non-trivial spin-textures.Comment: 7 pages, 4 figure
The Thermal Design, Characterization, and Performance of the SPIDER Long-Duration Balloon Cryostat
We describe the SPIDER flight cryostat, which is designed to cool six
millimeter-wavelength telescopes during an Antarctic long-duration balloon
flight. The cryostat, one of the largest to have flown on a stratospheric
payload, uses liquid helium-4 to deliver cooling power to stages at 4.2 and 1.6
K. Stainless steel capillaries facilitate a high flow impedance connection
between the main liquid helium tank and a smaller superfluid tank, allowing the
latter to operate at 1.6 K as long as there is liquid in the 4.2 K main tank.
Each telescope houses a closed cycle helium-3 adsorption refrigerator that
further cools the focal planes down to 300 mK. Liquid helium vapor from the
main tank is routed through heat exchangers that cool radiation shields,
providing negative thermal feedback. The system performed successfully during a
17 day flight in the 2014-2015 Antarctic summer. The cryostat had a total hold
time of 16.8 days, with 15.9 days occurring during flight.Comment: 15 pgs, 17 fig
New evidence on Allyn Young's style and influence as a teacher
This paper publishes the hitherto unpublished correspondence between Allyn Abbott Young's biographer Charles Blitch and 17 of Young's former students or associates. Together with related biographical and archival material, the paper shows the way in which this adds to our knowledge of Young's considerable influence as a teacher upon some of the twentieth century's greatest economists. The correspondents are as follows: James W Angell, Colin Clark, Arthur H Cole, Lauchlin Currie, Melvin G de Chazeau, Eleanor Lansing Dulles, Howard S Ellis, Frank W Fetter, Earl J Hamilton, Seymour S Harris, Richard S Howey, Nicholas Kaldor, Melvin M Knight, Bertil Ohlin, Geoffrey Shepherd, Overton H Taylor, and Gilbert Walker
SCAMP:standardised, concentrated, additional macronutrients, parenteral nutrition in very preterm infants: a phase IV randomised, controlled exploratory study of macronutrient intake, growth and other aspects of neonatal care
<p>Abstract</p> <p>Background</p> <p>Infants born <29 weeks gestation are at high risk of neurocognitive disability. Early postnatal growth failure, particularly head growth, is an important and potentially reversible risk factor for impaired neurodevelopmental outcome. Inadequate nutrition is a major factor in this postnatal growth failure, optimal protein and calorie (macronutrient) intakes are rarely achieved, especially in the first week. Infants <29 weeks are dependent on parenteral nutrition for the bulk of their nutrient needs for the first 2-3 weeks of life to allow gut adaptation to milk digestion. The prescription, formulation and administration of neonatal parenteral nutrition is critical to achieving optimal protein and calorie intake but has received little scientific evaluation. Current neonatal parenteral nutrition regimens often rely on individualised prescription to manage the labile, unpredictable biochemical and metabolic control characteristic of the early neonatal period. Individualised prescription frequently fails to translate into optimal macronutrient delivery. We have previously shown that a standardised, concentrated neonatal parenteral nutrition regimen can optimise macronutrient intake.</p> <p>Methods</p> <p>We propose a single centre, randomised controlled exploratory trial of two standardised, concentrated neonatal parenteral nutrition regimens comparing a standard macronutrient content (maximum protein 2.8 g/kg/day; lipid 2.8 g/kg/day, dextrose 10%) with a higher macronutrient content (maximum protein 3.8 g/kg/day; lipid 3.8 g/kg/day, dextrose 12%) over the first 28 days of life. 150 infants 24-28 completed weeks gestation and birthweight <1200 g will be recruited. The primary outcome will be head growth velocity in the first 28 days of life. Secondary outcomes will include a) auxological data between birth and 36 weeks corrected gestational age b) actual macronutrient intake in first 28 days c) biomarkers of biochemical and metabolic tolerance d) infection biomarkers and other intravascular line complications e) incidence of major complications of prematurity including mortality f) neurodevelopmental outcome at 2 years corrected gestational age</p> <p>Trial registration</p> <p>Current controlled trials: <a href="http://www.controlled-trials.com/ISRCTN76597892">ISRCTN76597892</a>; EudraCT Number: 2008-008899-14</p
Mass and Hot Baryons in Massive Galaxy Clusters from Subaru Weak Lensing and AMiBA SZE Observations
We present a multiwavelength analysis of a sample of four hot (T_X>8keV)
X-ray galaxy clusters (A1689, A2261, A2142, and A2390) using joint AMiBA
Sunyaev-Zel'dovich effect (SZE) and Subaru weak lensing observations, combined
with published X-ray temperatures, to examine the distribution of mass and the
intracluster medium (ICM) in massive cluster environments. Our observations
show that A2261 is very similar to A1689 in terms of lensing properties. Many
tangential arcs are visible around A2261, with an effective Einstein radius
\sim 40 arcsec (at z \sim 1.5), which when combined with our weak lensing
measurements implies a mass profile well fitted by an NFW model with a high
concentration c_{vir} \sim 10, similar to A1689 and to other massive clusters.
The cluster A2142 shows complex mass substructure, and displays a shallower
profile (c_{vir} \sim 5), consistent with detailed X-ray observations which
imply recent interaction. The AMiBA map of A2142 exhibits an SZE feature
associated with mass substructure lying ahead of the sharp north-west edge of
the X-ray core suggesting a pressure increase in the ICM. For A2390 we obtain
highly elliptical mass and ICM distributions at all radii, consistent with
other X-ray and strong lensing work. Our cluster gas fraction measurements,
free from the hydrostatic equilibrium assumption, are overall in good agreement
with published X-ray and SZE observations, with the sample-averaged gas
fraction of = 0.133 \pm 0.027, for our sample = (1.2 \pm
0.1) \times 10^{15} M_{sun} h^{-1}. When compared to the cosmic baryon fraction
f_b = \Omega_b/\Omega_m constrained by the WMAP 5-year data, this indicates
/f_b = 0.78 \pm 0.16, i.e., (22 \pm 16)% of the baryons are missing
from the hot phase of clusters.Comment: accepted for publication in ApJ; high resolution figures available at
http://www.asiaa.sinica.edu.tw/~keiichi/upfiles/AMiBA7/ms_highreso.pd
Spin-orbit density wave induced hidden topological order in URu2Si2
The conventional order parameters in quantum matters are often characterized
by 'spontaneous' broken symmetries. However, sometimes the broken symmetries
may blend with the invariant symmetries to lead to mysterious emergent phases.
The heavy fermion metal URu2Si2 is one such example, where the order parameter
responsible for a second-order phase transition at Th = 17.5 K has remained a
long-standing mystery. Here we propose via ab-initio calculation and effective
model that a novel spin-orbit density wave in the f-states is responsible for
the hidden-order phase in URu2Si2. The staggered spin-orbit order 'spontaneous'
breaks rotational, and translational symmetries while time-reversal symmetry
remains intact. Thus it is immune to pressure, but can be destroyed by magnetic
field even at T = 0 K, that means at a quantum critical point. We compute
topological index of the order parameter to show that the hidden order is
topologically invariant. Finally, some verifiable predictions are presented.Comment: (v2) Substantially modified from v1, more calculation and comparison
with experiments are include
- …