759 research outputs found

    Transvaal and Natal Iron Age settlement revealed by aerial photography and excavation

    Get PDF
    African Studies Seminar series. Paper presented 1968In 1820 John Campbell visited a thriving Iron Age settlement built by the Hurutse tribe at that time under the regent Liqueling, and known as Kurrichane or Kaditshwene (spelling uncertain), believed to be near the present town of Zeerust in the S.W. Transvaal. … In 1828 Robert Moffat, travelling to the east of Kurrichane, described remains of innumerable, recently destroyed settlements similar to Kurrichane. Moffat’s record was the start of Iron Age research in the Transvaal. Most, or all, of the Iron Age structures discussed in the present paper probably predate the tribal wars of the 1820's. My subject in the present paper is confined to Iron Age structures

    Numerical approximation of the Euler-Poisson-Boltzmann model in the quasineutral limit

    Get PDF
    This paper analyzes various schemes for the Euler-Poisson-Boltzmann (EPB) model of plasma physics. This model consists of the pressureless gas dynamics equations coupled with the Poisson equation and where the Boltzmann relation relates the potential to the electron density. If the quasi-neutral assumption is made, the Poisson equation is replaced by the constraint of zero local charge and the model reduces to the Isothermal Compressible Euler (ICE) model. We compare a numerical strategy based on the EPB model to a strategy using a reformulation (called REPB formulation). The REPB scheme captures the quasi-neutral limit more accurately

    Beyond electoralism: reflections on anarchy, populism, and the crisis of electoral politics

    Get PDF
    This paper is comprised of a series of short, conversational or polemical interventions reflecting on the political ‘moment’ that has emerged in the wake of the rise of right-populist politics, particularly in the Global North. We position the UK’s ‘Brexit’ vote and the election of Donald Trump as US President as emblematic of this shift, which has a longer genesis and a wider scale than these events alone. In particular, we draw on anarchist principles and approaches to consider opportunities for re-energising and re-orienting our academic and activist priorities in the wake of these turbulent times. Following a short introductory section, in which we collectively discuss key questions, challenges and tensions, each contributor individually draws from their own research or perspective to explore the possibilities of a politics beyond electoralism

    Direct Observation of a One Dimensional Static Spin Modulation in Insulating La1.95Sr0.05CuO4

    Full text link
    We report the results of an extensive elastic neutron scattering study of the incommensurate (IC) static spin correlations in La1.95Sr0.05CuO4 which is an insulating spin glass at low temperatures. The present neutron scattering experiments on the same x=0.05 crystal employ a narrower instrumental Q-resolution and thereby have revealed that the crystal has only two orthorhombic twins at low temperatures with relative populations of 2:1. We find that, in a single twin, only two satellites are observed at (1, +/-0.064, L)(ortho) and (0, 1+/-0.064, L)(ortho), that is, the modulation vector is only along the orthorhombic b*-axis. This demonstrates unambiguously that La1.95Sr0.05CuO4 has a one-dimensional static diagonal spin modulation at low temperatures, consistent with certain stripe models. We have also reexamined the x=0.04 crystal that previously was reported to show a single commensurate peak. By mounting the sample in the (H, K, 0) zone, we have discovered that the x=0.04 sample in fact has the same IC structure as the x=0.05x=0.05 sample. The incommensurability parameter d for x=0.04 and 0.05, where d is the distance from (1/2, 1/2) in tetragonal reciprocal lattice units, follows the linear relation d=x. These results demonstrate that the insulator to superconductor transition in the under doped regime (0.05 </= x </= 0.06) in La2-xSrxCuO4 is coincident with a transition from diagonal to collinear static stripes at low temperatures thereby evincing the intimate coupling between the one dimensional spin density modulation and the superconductivity.Comment: 9 pages 8 figure

    A Gene Network Perspective on Axonal Regeneration

    Get PDF
    The regenerative capacity of injured neurons in the central nervous system is limited due to the absence of a robust neuron-intrinsic injury-induced gene response that supports axon regeneration. In peripheral neurons axotomy induces a large cohort of regeneration-associated genes (RAGs). The forced expression of some of these RAGs in injured neurons has some beneficial effect on axon regeneration, but the reported effects are rather small. Transcription factors (TFs) provide a promising class of RAGs. TFs are hubs in the regeneration-associated gene network, and potentially control the coordinate expression of many RAGs simultaneously. Here we discuss the use of combined experimental and computational methods to identify novel regeneration-associated TFs with a key role in initiating and maintaining the RAG-response in injured neurons. We propose that a relatively small number of hub TFs with multiple functional connections in the RAG network might provide attractive new targets for gene-based and/or pharmacological approaches to promote axon regeneration in the central nervous system

    Understanding the impact of cavitation on hydrocarbons in the middle distillate range

    Get PDF
    NOTICE: this is the author’s version of a work that was accepted for publication in Fuel. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Fuel, 156, September 2015, pp. 30-39, http://dx/doi.org/10.1016/j.fuel.2015.04.026Hydrocarbons in the middle distillate range (C8 - C26) have been treated with ultrasound at 20 kHz - a frequency sufficient to drive acoustic cavitation. The high temperatures experienced as a result of the implosion of fuel vapour bubbles are sufficient to produce pyrolytic degradation and dehydrogenation, as well as a growth mechanism that results in the formation of small particles that have similarities with the primary soot particles produced during diesel combustion. These nanosized particles agglomerate as a result of kinetically driven collisions during cavitation to form a dispersion of micron sized particles in the treated hydrocarbon. The particles are carbonaceous in character, being a mixture of amorphous and graphitic-like carbon. The mass of material produced increases with the C/H atomic ratio of the hydrocarbon undergoing cavitation and is decreased through the addition (1 - 3 %v/v) of low boiling paraffinic hydrocarbons, possibly as a result of lowering the temperature developed inside imploding cavities. Dispersions of microparticles contain equilibrated levels of nanoparticles. If sufficiently high numbers of these smaller primary particles are present they agglomerate due to thermally driven collisions during post-cavitation storage. When this happened a sharp rise in the number of 1 - 2 µm particles was seen after only a few days. Some evidence is presented for the behaviour of ultrasonically treated hydrocarbons being related to the degradation of diesel fuel exposed to hydrodynamic cavitation in the fuel systems of modern common rail direct injection diesel engines.Shell Global Solution

    Revisiting the Local Scaling Hypothesis in Stably Stratified Atmospheric Boundary Layer Turbulence: an Integration of Field and Laboratory Measurements with Large-eddy Simulations

    Full text link
    The `local scaling' hypothesis, first introduced by Nieuwstadt two decades ago, describes the turbulence structure of stable boundary layers in a very succinct way and is an integral part of numerous local closure-based numerical weather prediction models. However, the validity of this hypothesis under very stable conditions is a subject of on-going debate. In this work, we attempt to address this controversial issue by performing extensive analyses of turbulence data from several field campaigns, wind-tunnel experiments and large-eddy simulations. Wide range of stabilities, diverse field conditions and a comprehensive set of turbulence statistics make this study distinct
    corecore