We report the results of an extensive elastic neutron scattering study of the
incommensurate (IC) static spin correlations in La1.95Sr0.05CuO4 which is an
insulating spin glass at low temperatures. The present neutron scattering
experiments on the same x=0.05 crystal employ a narrower instrumental
Q-resolution and thereby have revealed that the crystal has only two
orthorhombic twins at low temperatures with relative populations of 2:1. We
find that, in a single twin, only two satellites are observed at (1, +/-0.064,
L)(ortho) and (0, 1+/-0.064, L)(ortho), that is, the modulation vector is only
along the orthorhombic b*-axis. This demonstrates unambiguously that
La1.95Sr0.05CuO4 has a one-dimensional static diagonal spin modulation at low
temperatures, consistent with certain stripe models. We have also reexamined
the x=0.04 crystal that previously was reported to show a single commensurate
peak. By mounting the sample in the (H, K, 0) zone, we have discovered that the
x=0.04 sample in fact has the same IC structure as the x=0.05 sample. The
incommensurability parameter d for x=0.04 and 0.05, where d is the distance
from (1/2, 1/2) in tetragonal reciprocal lattice units, follows the linear
relation d=x. These results demonstrate that the insulator to superconductor
transition in the under doped regime (0.05 </= x </= 0.06) in La2-xSrxCuO4 is
coincident with a transition from diagonal to collinear static stripes at low
temperatures thereby evincing the intimate coupling between the one dimensional
spin density modulation and the superconductivity.Comment: 9 pages 8 figure