3,344 research outputs found

    Using Whole-Group Metabolic Rate and Behaviour to Assess the Energetics of Courtship in Red-Sided Garter Snakes

    Full text link
    Reproductive effort is an important aspect of life history as reproductive success is arguably the most important component of fitness. Males tend to compete for access to females and, in the process, expend their energetic capital on mate searching, maleemale competition and courtship rather than directly on offspring. Red-sided garter snakes, Thamnophis sirtalis parietalis, are an exceptional model for studying energetic costs of courtship and mating as they fast during the spring mating season, which segregates the cost of energy acquisition from the cost of courtship and mating. However, measuring an individual male\u27s metabolic rate during courtship is complicated by the fact that male courtship behaviour in redsided garter snakes is dependent on both the detection of a female sexual attractiveness pheromone and on facilitated courtship (i.e. vigorous courtship is only exhibited in the presence of other males). Thus, traditional techniques of placing a mask over the head of individuals would prevent male courtship behaviour, and single animals placed in a flow-through chamber would not yield ecologically realistic levels of courtship, which are only seen in the context of a mating aggregation in this species. Because of these difficulties, we placed groups of males in a flow-through metabolic chamber together with a single female whose respiratory gases were vented outside the chamber to yield a whole-group metabolic rate during competitive courtship. We also measured the standard metabolic rates (SMR) of the males individually for comparison with active metabolic rates. Conservative estimates of peak group metabolic rates during courtship are 10e20 times higher than resting group metabolic rate, which was 1.88 times higher than SMR. These measurements, coupled with the fact that these males are aphagous during the breeding, indicates that costs of courtship may be high for males and has implications for the male mating tactics in this system

    A Convex Polynomial Force-Motion Model for Planar Sliding: Identification and Application

    Full text link
    We propose a polynomial force-motion model for planar sliding. The set of generalized friction loads is the 1-sublevel set of a polynomial whose gradient directions correspond to generalized velocities. Additionally, the polynomial is confined to be convex even-degree homogeneous in order to obey the maximum work inequality, symmetry, shape invariance in scale, and fast invertibility. We present a simple and statistically-efficient model identification procedure using a sum-of-squares convex relaxation. Simulation and robotic experiments validate the accuracy and efficiency of our approach. We also show practical applications of our model including stable pushing of objects and free sliding dynamic simulations.Comment: 2016 IEEE International Conference on Robotics and Automation (ICRA

    Interoperability Gap Challenges for Learning Object Repositories & Learning Management Systems

    Get PDF
    An interoperability gap exists between Learning Management Systems (LMSs) and Learning Object Repositories (LORs). Learning Objects (LOs) and the associated Learning Object Metadata (LOM) that is stored within LORs adhere to a variety of LOM standards. A common LOM standard found in LORs is the Sharable Content Object Reference Model (SCORM) Content Aggregation Model (CAM). In contrast, LMSs are independent computer systems that manage and deliver course content to students via a web interface. This research addressed three important issues related to the interoperability gap: (a) a lack of a metadata standard that defined the format of how student assessment data should be communicated from LMSs to LORs, (b) a lack of an architectural standard for the movement of data from LMSs to LORs, and (c) a lack of middleware that facilitated the movement of the student assessment data from the LMSs to LORs. This research achieved the following objectives: (a) the SCORM CAM LOM standard was extended to facilitate the storage of student assessment data, (b) Service Oriented Architecture (SOA) was identified as the best architecture to resolve the interoperability gap between LMSs and LORs, (c) a panel of Computer Information Systems (CIS) experts participated in a five-stage, web-based, anonymous Delphi process that approved and ranked 28 functional requirements for a proposed middleware application, and (d) the functional requirements were verified via the development of a prototype that transferred student assessment data from a LMSs into the LOM of LOs that are stored within a LOR. In conclusion, the research demonstrated that there are three acceptable approaches to extending the SCORM LOM standard: (a) new metadata elements, (b) new vocabulary values, and (c) the reference of an internal or external XML file using a location element. The main accomplishments of the research were the gathering of SOA functional requirements and the development of a prototype that provided an approach for the resolution of the interoperability gap that exists between LMSs and LORs

    Potential Energy Curves of Hydrogen Fluoride

    Get PDF
    Potential energy curves for the X(sup 1)sigma+ and V(sup 1)sigma+ states of HF and DF have been calculated by the Rydberg-Klein-Rees method. The results calculated from the different sets of data for HF and DF are found to be in very good agreement. The theoretical results of Karo are compared to the experimental results obtained here

    MRI: Acquisition of a SQUID Magnetometer for Analysis of Advanced Materials

    Get PDF
    Technical Summary: Superconducting quantum interference device (SQUID) magnetometry is a non-destructive technique that reveals detailed information about the electron spin interactions in many types of materials. This project will involve a state-of-the-art SQUID magnetometer and Magnetic Property Measurement System (MPMS), which is a critical tool for characterizing several types of materials currently being investigated by researchers within the Laboratory for Surface Science & Technology (LASST) and other University of Maine (UMaine) laboratories. Specific measurement capabilities include DC and AC magnetic susceptibility, magnetoresistivity, van der Paaw conductivity, and Hall mobility. State-of-the-art MPMS capabilities will be especially valuable to several research programs at UMaine pertaining to (i) surface magnetism in nanoparticles, (ii) magnetic anisotropies in sedimentary rocks, (iii) electrical transport in physical and chemical sensing devices, (iv) optical properties of nanostructures in high magnetic fields, and (v) magnetic nanoparticle based biosensors. The MPMS will serve as a focal point for training undergraduates, graduate students, postdocs, and visiting scientists in magnetic materials, nanotechnology, biophysics, and materials science. This instrument is a critical tool for expanding the capacity of UMaine research into magnetic aspects of nanotechnology, biophysics, sensor technology, and materials science. As no SQUID magnetometer currently exists in the State of Maine, the instrumentation will provide access for research projects from interested parties throughout the state, including non-Ph.D. granting institutions and small Maine businesses. The instrument is relatively easy to operate and provides direct information on electron spin interactions, and thus it will be a powerful tool to teach physics and nanotechnology concepts to several different constituents participating in UMaine outreach activities, including K-12 students and teachers, the general public, under-represented groups, and industry partners.Layman Summary: Superconducting quantum interference device (SQUID) magnetometry is a non-destructive technique that reveals detailed information about the electron spin interactions in many types of materials. Knowledge of electron interactions in materials is extremely important in building the next generation of computers, electronics, and contrast agents in biological magnetic screening techniques (i.e. MRI). To gain the necessary information, a system with control over both the magnetic field strength and temperature is critical. To this end, a SQUID/Magnetic Property Measurement System (MPMS) is ideal for these measurements. This project will purchase a state-of-the-art MPMS system and will be especially valuable to several research programs at UMaine pertaining to surface magnetism in nanoparticles, magnetic anisotropies in sedimentary rocks, electrical transport in physical and chemical sensing devices, and magnetic nanoparticle based biosensors. The proposed MPMS will serve as a focal point for training undergraduates, graduate students, postdocs, and visiting scientists in magnetic materials, nanotechnology, biophysics, and materials science. As no SQUID magnetometer currently exists in the State of Maine, the instrumentation will provide access for research projects from interested parties throughout the state, including non-Ph.D. granting institutions and small Maine businesses. The instrument is relatively easy to operate and provides direct information on electron spin interactions, and thus it will be a powerful tool to teach physics and nanotechnology concepts to several different constituents participating in UMaine outreach activities, including K-12 students and teachers, the general public, under-represented groups, and industry partners

    Size Dependence in Non-sperm Ejaculate Production is Reflected in Daily Energy Expenditure and Resting Metabolic Rate

    Full text link
    The non-sperm components of an ejaculate, such as copulatory plugs, can be essential to male reproductive success. But the costs of these ejaculate components are often considered trivial. In polyandrous species, males are predicted to increase energy allocation to the production of non-sperm components, but this allocation is often condition dependent and the energetic costs of their production have never been quantified. Red-sided garter snakes (Thamnophis sirtalis parietalis) are an excellent model with which to quantify the energetic costs of non-sperm components of the ejaculate as they exhibit a dissociated reproductive pattern in which sperm production is temporally disjunct from copulatory plug production, mating and plug deposition. We estimated the daily energy expenditure and resting metabolic rate of males after courtship and mating, and used bomb calorimetry to estimate the energy content of copulatory plugs. We found that both daily energy expenditure and resting metabolic rate were significantly higher in small mating males than in courting males, and a single copulatory plug without sperm constitutes 5–18% of daily energy expenditure. To our knowledge, this is the first study to quantify the energetic expense of size-dependent ejaculate strategies in any species

    Nutrient Supply and Mercury Dynamics in Marine Ecosystems: A Conceptual Model

    Get PDF
    There is increasing interest and concern over the impacts of mercury (Hg) inputs to marine 32 ecosystems. One of the challenges in assessing these effects is that the cycling and trophic 33 transfer of Hg are strongly linked to other contaminants and disturbances. In addition to Hg, a 34 major problem facing coastal waters is the impacts of elevated nutrient, particularly nitrogen 35 (N), inputs. Increases in nutrient loading alter coastal ecosystems in ways that should change 36 the transport, transformations and fate of Hg, including increases in fixation of organic carbon 37 and deposition to sediments, decreases in the redox status of sediments and changes in fish 38 habitat. In this paper we present a conceptual model which suggests that increases in loading 39 of reactive N to marine ecosystems might alter Hg dynamics, decreasing bioavailabilty and 40 trophic transfer. This conceptual model is most applicable to coastal waters, but may also be 41 relevant to the pelagic ocean. We present information from case studies that both support and 42 challenge this conceptual model, including marine observations across a nutrient gradient; 43 results of a nutrient‐trophic transfer Hg model for pelagic and coastal ecosystems; observations 44 of Hg species, and nutrients from coastal sediments in the northeastern U.S.; and an analysis of 45 fish Hg concentrations in estuaries under different nutrient loadings. These case studies suggest 46 that changes in nutrient loading can impact Hg dynamics in coastal and open ocean ecosystems. 47 Unfortunately none of the case studies is comprehensive; each only addresses a portion of the 48 conceptual model and has limitations. Nevertheless, our conceptual model has important 49 management implications. Many estuaries near developed areas are impaired due to elevated 50 nutrient inputs. Widespread efforts are underway to control N loading and restore coastal 51 ecosystem function. An unintended consequence of nutrient control measures could be to 3 exacerbate 52 problems associated with Hg contamination. Additional focused research and 53 monitoring are needed to critically examine the link between nutrient supply and Hg 54 contamination of marine waters

    Case study: Treatment of oral and locomotory stereotypic behaviors in a mature sow

    Get PDF
    A 32-month-old female 225-kg nonpregnant cross-bred Newsham sow presented a 6-week history of stereotypic behaviors when housed in a laboratory research facility. A behavioral examination over 12 daylight hours revealed 3 main stereotypic motor patterns, namely (1) oral-nasal gate manipulation defined as placement of the snout between the bars of the pen gate with repetitive, forceful up and down movement; (2) head weaving defined as repetitive lateral head and snout movement toward the pen gates while rocking back and forth on her forequarters with hooves remaining on ground at all times; and (3) body weaving defined as repetitive shifting of body weight from one side to the other with front hooves lifting alternately off the ground. The sow performed the oral-nasal gate manipulation and head and body weaving 4.0%, 12.4%, and 6.8% of her total baseline time budget, respectively. The presumptive diagnosis was oral-nasal and locomotory stereotypies. Three treatments were used to mitigate the duration and frequency of these stereotypic behaviors. Treatment 1—Social treatment (change social stimuli by providing visual and nose-to-nose contact with different neighboring sows); Treatment 2—Forage treatment (change foraging substrates by providing peat moss as a rooting substrate); and Treatment 3—Space treatment (change pen configuration by increasing space). The sow performed the oral-nasal gate manipulation and head and body weaving 0%, 0.4%, and 0.1% of her total time budget, respectively; social treatment: the sow performed the oral-nasal gate manipulation and head and body weaving 0.9%, 15.3%, and 11.3% of her total time budget, respectively; and forage treatment: the sow performed the oral-nasal gate manipulation and head and body weaving 0.5%, 28.0%, and 15.5% of her total time budget, respectively. This study is one of the first reports to evaluate the treatment of established stereotypies in a mature sow. Results suggest the promise of environmental enrichment as an effective treatment strategy. Further research is needed to evaluate the persistence of these behavioral changes and relative importance of different environmental manipulations provided
    corecore