Syracuse University SURFACE

Civil and Environmental Engineering

College of Engineering and Computer Science

2012

Marine Mercury Fate: From Sources to Seafood Consumers

Celia Y. Chen Department of Biological Sciences, Dartmouth College

Charles T. Driscoll Syracuse University

Kathy Lambert Harvard Forest, Harvard University

Robert P. Mason Department of Marine Sciences, University of Connecticut

Laurie Rardin Dartmouth Toxic Metals Superfund Research Program

Follow this and additional works at: https://surface.syr.edu/cie

Part of the Civil and Environmental Engineering Commons

Recommended Citation

Chen, Celia Y., Driscoll, Charles T., Lambert, Kathleen F., Mason, Robert P., Rardin, Laurie R., Serrell, Nancy, & Sunderland, Elsie M. (2012). Marine mercury fate: From sources to seafood consumers. Environmental Research, 119(0), 1-2. doi: http://dx.doi.org/10.1016/j.envres.2012.10.001

This Article is brought to you for free and open access by the College of Engineering and Computer Science at SURFACE. It has been accepted for inclusion in Civil and Environmental Engineering by an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

- 1 EDITORIAL: Marine mercury fate: from sources to seafood consumers
- 2 Celia Y. Chen
- 3 celia.Y.Chen@Dartmouth.edu
- 4 Department of Biological Sciences, Dartmouth College, Hanover, New
- 5 Hampshire, USA;
- 6 Charley Driscoll
- 7 ctdrisco@syr.edu
- 8 Department of Engineering, Syracuse University, Syracuse, New York, USA
- 9 Kathy Lambert
- 10 klambert01@fas.harvard.edu
- 11 Harvard Forest, Harvard University, Petersham, Massachusetts, USA;
- 12 Robert P. Mason
- 13 robert.mason@uconn.edu
- 14 Department of Marine Sciences, University of Connecticut, Avery Point,
- 15 Connecticut, USA;
- 16 Laurie Rardin
- 17 laurie.r.rardin@dartmouth.edu
- 18 Dartmouth Toxic Metals Superfund Research Program, Dartmouth College,
- 19 Hanover, New Hampshire, USA;
- 20 Nancy Serrell
- 21 nancy.serrell@dartmouth.edu
- 22 Office of the Provost, Dartmouth College, Hanover, New Hampshire, USA;
- 23 Elsie Sunderland

- 24 Elsie_sunderland@harvard.edu
- 25 Department of Environmental Health, School of Public Health, Harvard
- 26 University, Cambridge, Massachusetts, USA.
- 27
- 28

29 Mercury in the biosphere has markedly increased over the past century leading 30 governments around the world to consider policies that would reduce sources to 31 limit human exposure to this global contaminant. The nine articles in this issue 32 provide a synthesis of the science on the sources, fate, and human exposure to 33 mercury (Hg) in marine systems. These papers along with two papers recently 34 published in *Environmental Health Perspectives* are the products of two 35 workshops convened by the Coastal and Marine Mercury Ecosystem Research 36 Collaborative (C-MERC) sponsored by the Dartmouth Superfund Research 37 Program. In September 2010 and July 2011 we brought together scientists and 38 policy stakeholders to compile and distill information on the inputs, cycling and 39 uptake of Hg in marine ecosystems and the links to fish, wildlife and human 40 exposure to methylmercury (MeHg), the most bioaccumulative form of this global 41 contaminant. The goal of this C-MERC effort was to provide a summary of the 42 current science relevant to public policies being considered at the regional, 43 national and global level, such as the effort of the United Nations Environment 44 Programme to establish the first International Mercury Treaty. 45

Seven papers in this special issue review the pathways and transformations of
Hg and MeHg from sources to seafood consumers in specific marine
ecosystems. These include: the Gulf of Maine (Sunderland et al. 2012),;the Gulf
of Mexico (Harris et al. 2012a, b); San Francisco Bay (Davis et al. 2012); the
Arctic Ocean (Kirk et al. 2012),;Tropical Oceans (Costa et al. 2012); and the
global oceans (Mason et al. 2012). The paper by Driscoll et al. (2012) presents a

conceptual model of interactions between Hg cycling and nutrient loading in
marine ecosystems and the paper by Lambert et al. (2012) provides a review of
Hg science on marine ecosystems and implications for policy. The C-MERC
papers published in *Environmental Health Perspectives* focused on human
health effects of low level methylmercury (MeHg) exposure (Karagas et al. 2012)
and on the complexities of providing clear, unified fish consumption advice (Oken
et al. 2012).

59

60 Coal burning and energy production along with mining and industrial activities 61 have led to increased mercury in the environment (Mason et al. 1994; Driscoll et 62 al. 2007; Selin et al. 2008). Mercury is ranked third on the Agency for Toxic 63 Substances and Disease Registry's priority list of contaminants that pose 64 significant human health threats to the U.S. population (ATSDR 2007). More than 65 90 percent of Hg exposure in the U.S. comes from consumption of estuarine and 66 marine fish contaminated by MeHg, the most bioavailable form (Sunderland 67 2007; Chen et al. 2008). This exposure is the result of consuming higher trophic 68 level fish, which generally have higher MeHg concentrations, in combination with 69 more frequently eaten lower trophic level species (e.g., pollock, crabs, shrimp). 70 Due to this widespread human exposure, all 50 U.S. states have established fish 71 consumption advisories for Hq, and most U.S. coastal states on the Atlantic 72 Ocean have statewide coastal advisories (USEPA 2008; Schmeltz et al. 2011). 73 Though most people in the U.S. are exposed to MeHg through consumption of 74 open ocean fish, coastal populations have higher exposure through

75 local/subsistence consumption of regional coastal fisheries.

76

77	Ocean systems included in this special issue represent a broad range of
78	management challenges for MeHg contamination due to 1) physical
79	characteristics, 2) dominant Hg sources and MeHg inputs, and 3) different
80	human fish consumption patterns. The relative contribution of different sources
81	of Hg (direct atmospheric inputs, watershed inputs, and exchange at the ocean
82	system boundaries) varies greatly but tends to scale with ocean system size; the
83	larger the water surface area, the more significant are direct atmospheric sources
84	and in situ water column production of MeHg, and the less dominant are
85	watershed and coastal point sources.
86	
87	Offshore Hg concentrations in open ocean fish are determined by direct
88	atmospheric inputs, which are transferred via lateral currents to sites of Hg
89	methylation. As a result, MeHg levels in open ocean fish reflect atmospheric
90	deposition on a global scale (Mason et al. 2012, this issue). Modeling studies and
91	measurements suggest that while Hg in the open oceans and MeHg in ocean fish

92 will decrease immediately in response to decreases in atmospheric emissions it

93 will take many decades for these reductions to be fully realized. These declines

94 will benefit the general population of fish consumers who tend to eat grocery

95 store fish harvested from the open ocean (e.g., canned tuna).

96

97	Marine inshore Hg levels are primarily influenced by coastal and watershed
98	inputs (e.g., point source discharges, legacy contamination, and indirect
99	atmospheric inputs). However, there are also substantial differences across
100	coastal regions in their ability to convert inorganic Hg to MeHg. Hg
101	concentrations of fish in coastal waters have been shown to respond in the short
102	term to control of local Hg discharges which are methylated in coastal sediments.
103	Coastal monitoring data suggest that the measurable impacts on fish MeHg
104	concentrations will yield benefits to local fishers who consume recreationally
105	caught fish from adjacent coastal waters (Sunderland et al. 2012, this issue).
106	
107	Hg fate and bioavailability in marine systems and associated human exposure
108	are also affected by confounding factors such as nutrients and climate change. A
109	conceptual model testing for interactions of nitrogen inputs and Hg bioavailability
110	indicates that increased nutrient concentrations relate to decreased Hg and
111	MeHg in marine organisms (Driscoll et al. 2012, this issue). Climate change will
112	also alter marine ecosystems in ways that will influence Hg fate but these
113	impacts are not yet fully understood. Melting sea ice in the Arctic will alter food
114	webs and mercury biomagnification by forcing animals such as Arctic cod that
115	normally live beneath the ice to feed instead in surface waters where mercury is
116	more available (Kirk et al. 2012, this issue). Changes in ocean temperatures will
117	also alter zones of MeHg production in the open ocean as well as ocean currents
118	that transport Hg between ocean basins. These confounding factors suggest
119	that need for greater attention and resources for mercury monitoring in coastal

120	and marine systems in order to accurately assess the efficacy of national and
121	international policy and associated declines in Hg inputs (Evers et al. 2008;
122	Lambert et al. 2012).

123

124 Scientific research on Hg fate, and MeHg production and bioaccumulation has 125 had an important role in informing and motivating policy. However, a number of 126 challenges particular to MeHg fate and transport in marine systems have 127 hindered progress in the policy arena (Lambert et al. 2012). These challenges 128 will benefit from a strong international agreement that addresses: the 129 transboundary nature of Hg including an emphasis on atmospheric emissions; 130 expanded cost benefit analyses that account for the human and ecological health effects of MeHg, investment in management trials for mitigating the on-going 131 132 contamination of legacy sources; and a comprehensive and integrated global 133 mercury monitoring network with periodic assessments (Lambert et al. 2012). 134 135 Current research indicates that mercury contamination of marine systems has 136 important implications for human health. Fortunately, as policy makers gather to 137 discuss remedies at all scales of government, a large body of mercury research 138 can inform their decision-making. This special issue on mercury in marine 139 ecosystems is the product of a group of scientists and stakeholders who 140 participated in the C-MERC effort to bring science to the policy table. 141

142

143 Literature Cited

144

TTT	
145	ATSDR. 2007. CERCLA Priority List of Hazardous Substances.
146	Available: http://www.atsdr.cdc.gov/cercla/07list.html [accessed 13
147	September 2011].
148	Chen, C.Y., Serrell, N., Evers, D.C., Fleishman, B.J., Lambert, K.F., Weiss, J.,
149	Mason, R.P., Bank, M.S. 2008. Methylmercury in marine ecosystems:
150	From sources to seafood consumers – A workshop report. Environ.
151	Health Perspectives 116: 1706-1712.
152	Costa, M., Barrocas, P., Barletta, M., Kehrig, H., Malm, O., Hacon, S., Moreira,
153	J., Vasconcellos, A.C., Landing, W., Evers, D., Buck, D., Holmes, C. 2012.
154	Are we changing Mercury cycling patterns in tropical and subtropical
155	coastal environments? Environmental Research, this issue.
156	Davis, J., Yee, D., Looker, R.E., Yee, D., Marvin-diPasquale, M., Grenier, L.,
157	Austin, C., McKee, L., Greenfield, B., Brodberg, R. Reducing
158	methylmercury accumulation in the food webs of San Francisco Bay and
159	its local watersheds. Environmental Research, in review.
160	Driscoll, C.T., Han, Y.J., Chen, C.Y., Evers, D.C., Lambert, K.F., Holsen, T.M.,
161	Kamman, N.C., Munson, R.K. 2007. Mercury contamination in forest and
162	freshwater ecosystems in the Northeastern United States. Bioscience
163	57(1): 17-28.
164	Driscoll, C.T., Chen, C.Y., Hammerschmidt, C.R., Mason, R.P., Gilmour, C.C.,
165	Sunderland, E.M., Greenfield, B.K., Buckman, K.L., Lamborg, C. H. 2012.
166	Nutrient supply and mercury dynamics in marine ecosystems: A
167	conceptual model. Environmental Research, this issue.
168	Evers, D.C., Mason, R.P., Kamman, N.C., Chen, C.Y., Bogomolni, A.L., Taylor,
169	D.L., Hammerschmidt, C.R., Jones, S.H., Burgess, N.M., Munney, K.
170	Parson, K.C. 2008. An integrated mercury monitoring program for
171	temperate estuarine and marine ecosystems on the North American
172	Atlantic Coast. Ecohealth 5: 426-441.
173	^a Harris, R., Pollman, C., Hutchinson, D., Landing, W., Axelrad, D., Morey, S.L.,
174	Dmitry Dukhovskoy, D., Vijayaraghavan, K. 2012. A screening model
175	analysis of mercury sources, fate and bioaccumulation in the Gulf of
176	Mexico. Environmental Research, this issue.
177	^b Harris, R., Pollman, C., Landing, W., Evans, D., Axelrad, D., Hutchinson, D.,
178	Morey, S., Rumbold, D., Dukhovskoy, D., Adams, D., Vijayaraghavan, K.,
179	Holmes, C., Atkinson, D., Myers, T., Sunderland, E. 2012. Mercury in the
180	Gulf of Mexico: Sources to Receptors. Environmental Research, this
181	issue.
182	Karagas, M.R., Choi, A., Oken, E., Horvat, M., Schoeny, R., Kamai, E., Cowell,
183	W., Grandjean, P., Korrick, S. Evidence on the human health effects of
184	low level methylmercury exposure. Environmental Health Perspectives
185	120: 799-806.
186	Kirk, J.L., Lehnherr, I., Andersson, M., Braune, B.M., Chan, L., Dastoor, A.P.,
187	Durnford, D., Gleason, A.L., Loseto, L., Steffen, A., St. Louis, V.L. 2012.

188	Mercury in Arctic marine ecosystems: sources, pathways, and exposure.
189	Environmental Research, this issue.
190	Lambert, K.F., Evers, D.C., Warner, K.A., King, S.L., Selin, N.E. 2012. Integrating
191	mercury science and policy in the marine context: challenges and
192	opportunities. Environmental Research, this issue.
193	Mason, R.P., Choi, A.L., Fitzgerald, W.F., Hammerschmidt, C.R., Lamborg, C.H.,
194	Sorenson, A.L., Sunderland, E.M. 2012. Mercury biogeochemical cycling
195	in the ocean and policy implications. Environmental Research, this issue.
196	Mason, R.P., Fitzgerald, W.F. 1990. Alkylmercury species in the equitorial
197	Pacific. Nature 347: 457-459.
198	Mason, R.P., Fitzgerald, W.F., Morel, F.M.M. 1994. The biogeochemical cycling
199	of elemental mercury: Anthropogenic influences. Cosmochimica Acta
200	58(15): 3191-3198.
201	Oken, E., Choi A.L., Karagas, M.R., Mariën, K., Rheinberger, C.M., Schoeny, R.,
202	Sunderland, E., Korrick, S. Which fish should I eat? Perspectives
203	influencing fish consumption choices. Environmental Health Perspectives
204	120:790-798.
205	Selin, N.E., Jacob, D.J,. Yantosca, R.M., Strode, S., Jaegle, L., Sunderland,
206	E.M. 2008. Correction to "Global 3-D land-ocean-atmosphere model for
207	mercury: Present-day versus preindustrial cycles and anthropogenic
208	enrichment factors for deposition. Gloal Biobeopchemical Cycles 22
209	GB3099, DOI:10.1029/2008GB003282.
210	Schmeltz, D., Ever, D., Driscoll, C.T., Artz, R., Cohen, M., Gay, D., Haeuber, R.,
211	Krabbenhoft, D.P., Mason, R., Morris, K., Wiener, J.G. 2011. MerNet: a
212	national monitoring network to assess responses to changing mercury
213	emissions in the United States. Ecotoxicology 20: 1713-1725.
214	Sunderland, E.M. 2007. Mercury exposure from domestic and imported estuarine
215	and marine fish in the US seafood market. Environmental Health
216	Perspectives 115(2): 235-242.
217	Sunderland, E.M., Amirbahman, A., Burgess, N.M., Dalziel, J., Harding, G.,
218	Jones, S.H., Kamai, E., Karagas, M.R., Shi, X., Chen, C.Y. 2012. Mercury
219	sources and fate in the Gulf of Maine. Environmental Research, this issue.
220	USEPA. 2008. The National Listing of Fish Advisories.
221	Available: http://water.epa.gov/scitech/swguidance/fishshellfish/fishadvisor
222	ies/index.cfm [accessed 13 September 2011].
223	
224	
225	
226	Corresponding Author: Celia Chen, celia.chen@dartmouth.edu, Department of
227	Biological Sciences, HB 6044, Class of '78 Life Sciences Center, Dartmouth
228	College, Hanover, NH 03755

228 College, Hanover, NH 03755