452 research outputs found
Arginine mutation alters binding of a human monoclonal antibody to antigens linked to systemic lupus erythematosus and the antiphospholipid syndrome
Objective: Previous studies have shown the importance of somatic mutations and arginine residues in the complementarity-determining regions (CDRs) of pathogenic anti-double-stranded DNA (anti-dsDNA) antibodies in human and murine lupus, and in studies of murine antibodies, a role of mutations at position 53 in VH CDR2 has been demonstrated. We previously demonstrated in vitro expression and mutagenesis of the human IgG1 monoclonal antibody B3. The present study was undertaken to investigate, using this expression system, the importance of the arginine residue at position 53 (R53) in B3 VH.
Methods: R53 was altered, by site-directed mutagenesis, to serine, asparagine, or lysine, to create 3 expressed variants of VH. In addition, the germline sequence of the VH3-23 gene (from which B3 VH is derived) was expressed either with or without arginine at position 53. These 5 new heavy chains, as well as wild-type B3 VH, were expressed with 4 different light chains, and the resulting antibodies were assessed for their ability to bind to nucleosomes, -actinin, cardiolipin, ovalbumin, 2-glycoprotein I (2GPI), and the N-terminal domain of 2GPI (domain I), using direct binding assays.
Results: The presence of R53 was essential but not sufficient for binding to dsDNA and nucleosomes. Conversely, the presence of R53 reduced binding to -actinin, ovalbumin, 2GPI, and domain I of 2GPI. The combination B3 (R53S) VH/B3 VL bound human, but not bovine, 2GPI.
Conclusion: The fact that the R53S substitution significantly alters binding of B3 to different clinically relevant antigens, but that the alteration is in opposite directions depending on the antigen, implies that this arginine residue plays a critical role in the affinity maturation of antibody B3
Superconductor-Insulator Transition in a Capacitively Coupled Dissipative Environment
We present results on disordered amorphous films which are expected to
undergo a field-tuned Superconductor-Insulator Transition.The addition of a
parallel ground plane in proximity to the film changes the character of the
transition.Although the screening effects expected from "dirty-boson" theories
are not evident,there is evidence that the ground plane couples a certain type
of dissipation into the system,causing a dissipation-induced phase
transition.The dissipation due to the phase transition couples similarly into
quantum phase transition systems such as superconductor-insulator transitions
and Josephson junction arrays.Comment: 4 pages, 4 figure
ASCA X-ray observations of the disk wind in the dwarf nova Z Camelopardalis
We present ASCA observations of the dwarf nova Z Camelopardalis during
outburst and during a transition from quiescence to another outburst.
At the beginning of the transition the X-ray count rate was an order of
magnitude higher and the spectrum much harder than during the outburst. As the
transition progressed, the spectrum remained hard as the X-ray flux decreased
by a factor of 3, with no spectral softening. Spectral modelling reveals an
optically-thin, high-temperature component (kT10 keV) which dominates
the transition observation and is also observed during outburst. This is
expected from material accreting onto the white dwarf surface. The outburst
spectra require additional emission at lower temperatures, either through an
additional discrete temperature component, or a combination of a cooling flow
model and an ionised absorber.
Fits to both observations show large amounts of absorption
(cm), two orders of magnitude greater than the
measured interstellar value, and consistent with UV measurements of the
outburst. This suggests that a disk wind is present even in the earliest stages
of outburst, possibly before the outburst heating wave has reached the boundary
layer.Comment: 9 pages, 9 figures, MNRAS Accepte
Recommended from our members
Transparent Conducting Oxides: Status and Opportunities in Basic Research
In this paper, we begin by discussing the historical background of transparent conducting oxides and then make some general remarks about their typical properties. This is followed by a short discussion of the desired properties for future applications (particularly photovoltaic devices). These are ambitious objectives but they provide targets for future basic research and development. Although it may be possible to obtain these properties in the laboratory, it is vital to ensure that account is taken of industrial perceptions to the development of the next generation of materials. Hence, we spend some time discussing industrial criteria. Next, we discuss key physical properties that determine the macroscopic physical properties that, in turn, affect the performance of devices. Finally, we select several key topics that ought to be included in future basic research programs
Improving tree mortality models by accounting for environmental influences
Tree-ring chronologies have been widely used in studies of tree mortality where variables of recent growth act as an indicator of tree physiological vigour. Comparing recent radial growth of live and dead trees thus allows estimating probabilities of tree mortality. Sampling of mature dead trees usually provides death-year distributions that may span over years or decades. Recent growth of dead trees (prior to death) is then computed during a number of periods, whereas recent growth (prior to sampling) for live trees is computed for identical periods. Because recent growth of live and dead trees is then computed for different periods, external factors such as disturbance or climate may influence growth rates and, thus, mortality probability estimations. To counteract this problem, we propose the truncating of live-growth series to obtain similar frequency distributions of the "last year of growth" for the populations of live and dead trees. In this paper, we use different growth scenarios from several tree species, from several geographic sources, and from trees with different growth patterns to evaluate the impact of truncating on predictor variables and their selection in logistic regression analysis. Also, we assess the ability of the resulting models to accurately predict the status of trees through internal and external validation. Our results suggest that the truncating of live-growth series helps decrease the influence of external factors on growth comparisons. By doing so, it reinforces the growth-vigour link of the mortality model and enhances the model's accuracy as well as its general applicability. Hence, if model parameters are to be integrated in simulation models of greater geographical extent, truncating may be used to increase model robustness
Deformation of Small Compressed Droplets
We investigate the elastic properties of small droplets under compression.
The compression of a bubble by two parallel plates is solved exactly and it is
shown that a lowest-order expansion of the solution reduces to a form similar
to that obtained by Morse and Witten. Other systems are studied numerically and
results for configurations involving between 2 and 20 compressing planes are
presented. It is found that the response to compression depends on the number
of planes. The shear modulus is also calculated for common lattices and the
stability crossover between f.c.c.\ and b.c.c.\ is discussed.Comment: RevTeX with psfig-included figures and a galley macr
The effect of biomass ashes and potassium salts on MEA degradation for BECCS
This study investigates the comparative impact of inherently different biomass and coal ashes on the laboratory and pilot scale degradation of 30 wt% aqueous monoethanolamine (MEA), relevant to post-combustion CO2 capture. Thermal and oxidative degradation experiments were carried out at 135 °C and 40 °C respectively with CO2 loading (0.5 molCO2/molMEA), with and without the presence of ash. Nuclear magnetic resonance (NMR) data is provided for the major MEA degradation compounds such as N-(2-hydroxyethyl)formamide (HEF) and N-(2-hydroxyethyl)imidazole (HEI) along with the characterisation of a new MEA oxidative degradation product, N-(2-hydroxyethyl)imidazole-N-oxide (HEINO) which had been previously misassigned. Degradation products were quantified using 1H NMR and gas chromatography mass spectrometry (GCâMS) to assess the impact of potassium and various ashes from combustion (olive, white wood and two types of coal ash) on the rates of amine degradation. Woody biomass fly ashes were found to reduce the presence of the oxidative degradation products. Both types of coal fly ash and the olive biomass ash were found to enhance the formation the newly identified degradation product, HEINO. Solvent samples taken from a pilot scale facility support these laboratory findings
Magnetic Properties of YBa_2Cu_3O_{7-\delta} in a self-consistent approach: Comparison with Quantum-Monte-Carlo Simulations and Experiments
We analyze single-particle electronic and two-particle magnetic properties of
the Hubbard model in the underdoped and optimally-doped regime of \YBCO by
means of a modified version of the fluctuation-exchange approximation, which
only includes particle-hole fluctuations. Comparison of our results with
Quantum-Monte Carlo (QMC) calculations at relatively high temperatures () suggests to introduce a temperature renormalization in order to
improve the agreement between the two methods at intermediate and large values
of the interaction .
We evaluate the temperature dependence of the spin-lattice relaxation time
and of the spin-echo decay time and compare it with the results
of NMR measurements on an underdoped and an optimally doped \YBCO sample. For
it is possible to consistently adjust the parameters of the Hubbard
model in order to have a good {\it semi-quantitative} description of this
temperature dependence for temperatures larger than the spin gap as obtained
from NMR measurements. We also discuss the case , which is more
appropriate to describe magnetic and single-particle properties close to
half-filling. However, for this larger value of the agreement with QMC as
well as with experiments at finite doping is less satisfactory.Comment: Final version, to appear in Phys. Rev. B (sched. Feb. 99
Upper critical field for underdoped high-T_c superconductors. Pseudogap and stripe--phase
We investigate the upper critical field in a stripe--phase and in the
presence of a phenomenological pseudogap. Our results indicate that the
formation of stripes affects the Landau orbits and results in an enhancement of
. On the other hand, phenomenologically introduced pseudogap leads to a
reduction of the upper critical field. This effect is of particular importance
when the magnitude of the gap is of the order of the superconducting transition
temperature. We have found that a suppression of the upper critical field takes
place also for the gap that originates from the charge--density waves.Comment: 7 pages, 5 figure
Specific Heat of Liquid Helium in Zero Gravity very near the Lambda Point
We report the details and revised analysis of an experiment to measure the
specific heat of helium with subnanokelvin temperature resolution near the
lambda point. The measurements were made at the vapor pressure spanning the
region from 22 mK below the superfluid transition to 4 uK above. The experiment
was performed in earth orbit to reduce the rounding of the transition caused by
gravitationally induced pressure gradients on earth. Specific heat measurements
were made deep in the asymptotic region to within 2 nK of the transition. No
evidence of rounding was found to this resolution. The optimum value of the
critical exponent describing the specific heat singularity was found to be a =
-0.0127+ - 0.0003. This is bracketed by two recent estimates based on
renormalization group techniques, but is slightly outside the range of the
error of the most recent result. The ratio of the coefficients of the leading
order singularity on the two sides of the transition is A+/A- =1.053+ - 0.002,
which agrees well with a recent estimate. By combining the specific heat and
superfluid density exponents a test of the Josephson scaling relation can be
made. Excellent agreement is found based on high precision measurements of the
superfluid density made elsewhere. These results represent the most precise
tests of theoretical predictions for critical phenomena to date.Comment: 27 Pages, 20 Figure
- âŠ