20 research outputs found

    Sequence Composition and Gene Content of the Short Arm of Rye (Secale cereale) Chromosome 1

    Get PDF
    BACKGROUND: The purpose of the study is to elucidate the sequence composition of the short arm of rye chromosome 1 (Secale cereale) with special focus on its gene content, because this portion of the rye genome is an integrated part of several hundreds of bread wheat varieties worldwide. METHODOLOGY/PRINCIPAL FINDINGS: Multiple Displacement Amplification of 1RS DNA, obtained from flow sorted 1RS chromosomes, using 1RS ditelosomic wheat-rye addition line, and subsequent Roche 454FLX sequencing of this DNA yielded 195,313,589 bp sequence information. This quantity of sequence information resulted in 0.43× sequence coverage of the 1RS chromosome arm, permitting the identification of genes with estimated probability of 95%. A detailed analysis revealed that more than 5% of the 1RS sequence consisted of gene space, identifying at least 3,121 gene loci representing 1,882 different gene functions. Repetitive elements comprised about 72% of the 1RS sequence, Gypsy/Sabrina (13.3%) being the most abundant. More than four thousand simple sequence repeat (SSR) sites mostly located in gene related sequence reads were identified for possible marker development. The existence of chloroplast insertions in 1RS has been verified by identifying chimeric chloroplast-genomic sequence reads. Synteny analysis of 1RS to the full genomes of Oryza sativa and Brachypodium distachyon revealed that about half of the genes of 1RS correspond to the distal end of the short arm of rice chromosome 5 and the proximal region of the long arm of Brachypodium distachyon chromosome 2. Comparison of the gene content of 1RS to 1HS barley chromosome arm revealed high conservation of genes related to chromosome 5 of rice. CONCLUSIONS: The present study revealed the gene content and potential gene functions on this chromosome arm and demonstrated numerous sequence elements like SSRs and gene-related sequences, which can be utilised for future research as well as in breeding of wheat and rye

    The RESET project: constructing a European tephra lattice for refined synchronisation of environmental and archaeological events during the last c. 100 ka

    Get PDF
    This paper introduces the aims and scope of the RESET project (. RESponse of humans to abrupt Environmental Transitions), a programme of research funded by the Natural Environment Research Council (UK) between 2008 and 2013; it also provides the context and rationale for papers included in a special volume of Quaternary Science Reviews that report some of the project's findings. RESET examined the chronological and correlation methods employed to establish causal links between the timing of abrupt environmental transitions (AETs) on the one hand, and of human dispersal and development on the other, with a focus on the Middle and Upper Palaeolithic periods. The period of interest is the Last Glacial cycle and the early Holocene (c. 100-8 ka), during which time a number of pronounced AETs occurred. A long-running topic of debate is the degree to which human history in Europe and the Mediterranean region during the Palaeolithic was shaped by these AETs, but this has proved difficult to assess because of poor dating control. In an attempt to move the science forward, RESET examined the potential that tephra isochrons, and in particular non-visible ash layers (cryptotephras), might offer for synchronising palaeo-records with a greater degree of finesse. New tephrostratigraphical data generated by the project augment previously-established tephra frameworks for the region, and underpin a more evolved tephra 'lattice' that links palaeo-records between Greenland, the European mainland, sub-marine sequences in the Mediterranean and North Africa. The paper also outlines the significance of other contributions to this special volume: collectively, these illustrate how the lattice was constructed, how it links with cognate tephra research in Europe and elsewhere, and how the evidence of tephra isochrons is beginning to challenge long-held views about the impacts of environmental change on humans during the Palaeolithic. © 2015 Elsevier Ltd.RESET was funded through Consortium Grants awarded by the Natural Environment Research Council, UK, to a collaborating team drawn from four institutions: Royal Holloway University of London (grant reference NE/E015905/1), the Natural History Museum, London (NE/E015913/1), Oxford University (NE/E015670/1) and the University of Southampton, including the National Oceanography Centre (NE/01531X/1). The authors also wish to record their deep gratitude to four members of the scientific community who formed a consultative advisory panel during the lifetime of the RESET project: Professor Barbara Wohlfarth (Stockholm University), Professor Jørgen Peder Steffensen (Niels Bohr Institute, Copenhagen), Dr. Martin Street (Romisch-Germanisches Zentralmuseum, Neuwied) and Professor Clive Oppenheimer (Cambridge University). They provided excellent advice at key stages of the work, which we greatly valued. We also thank Jenny Kynaston (Geography Department, Royal Holloway) for construction of several of the figures in this paper, and Debbie Barrett (Elsevier) and Colin Murray Wallace (Editor-in-Chief, QSR) for their considerable assistance in the production of this special volume.Peer Reviewe

    Genetic regulation of alpha-amylase synthesis in rye [Secale cereale L.] grain

    No full text
    Genetic analysis of two rye interline crosses and a set of wheat/rye chromosomal addition lines was performed to reveal the mechanism underlying wide variation range of alpha-amylase activity in sound grain. The long arm of chromosome 6R was found to be responsible for increased enzyme synthesis during late stages of triticale grain maturation. Only nuclear genes seemed to control alpha-amylase activity, as reciprocal crosses between rye lines showed no maternal effects. Low enzyme activity showed complete dominance over high level of its synthesis. Segregation ratios, observed in F₂ and BC₁ crosses, indicated that recessive alleles at two independent duplicative loci underlie intensive alpha-amylase production

    Genetic polymorphism and quantitative variation of alpha-amylases from rye endosperm

    No full text
    α-Amylase isozymes from rye endosperm were analysed by means of isoelectric focusing, polyacrylamide gel electrophoresis, immunoelectrophoresis and colorimetric assay. Α-AMY 1 (high pI) group was separated into 13 IEF bands, whereas in group α-AMY2 (low pI) 2 intensive and 6-8 faint bands were found. Two linked (2±1 cM) polymorphic loci and a single locus with two alleles encoding for α-AMY 1 and α-AMY 2 groups, respectively, were identified after genetic analysis of the IEF patterns. All α-amylase isozymes developed on PAGE, were shown to belong to α-AMY 1 group. It was demonstrated that a single PAGE isozyme corresponds to 2-4 separate IEF bands and that most of the IEF bands can be attributed to more than one PAGE isozyme. The activity of α-amylases from PAGE zone I was 2.3 times higher than the activity of zone II isozymes. A strong correlation between the activity and protein amount of particular α-AMY 1 isozymes (r=0.94) was found

    Association mapping of late maturity alpha-amylase (LMA) activity in a collection of synthetic hexaploid wheat

    No full text
    Late maturity α-amylase (LMA) is a genetic defect of wheat which results in the production of α-amylase, shown as substandard falling numbers, in the absence of preharvest rain and under cool temperatures during ripening. The present study is an attempt to use a whole-genome scan with DArT markers to identify chromosomal regions influencing LMA in synthetic hexaploid wheat (SHW). A high heritability estimate of 86.6% was calculated for LMA phenotype measured as optical density in a collection of 91 SHWs. Linkage disequilibrium extended up to 10 cM, and with controls for false positives, significant markers were detected at the chromosome 7B region previously linked to LMA in bread wheat, but not at the chromosome 3B region. Of potentially great interest is a region on chromosome 6B, which was identified as having a significant association with LMA phenotypes in the SHW accessions. Previous investigations suggested existence of an LMA gene on the long arm of 6B, but this is the first time it has been mapped to lie within the centromeric region of chromosome 6B, a region that harbours the Amy-1 genes and whose expression governs activity of the high pI α-amylase isoenzymes.L. C. Emebiri, J. R. Oliver, K. Mrva, D. Mare
    corecore