27 research outputs found
Reduced basal ganglia μ-opioid receptor availability in trigeminal neuropathic pain: A pilot study
Abstract
Background
Although neuroimaging techniques have provided insights into the function of brain regions involved in Trigeminal Neuropathic Pain (TNP) in humans, there is little understanding of the molecular mechanisms affected during the course of this disorder. Understanding these processes is crucial to determine the systems involved in the development and persistence of TNP.
Findings
In this study, we examined the regional μ-opioid receptor (μOR) availability in vivo (non-displaceable binding potential BPND) of TNP patients with positron emission tomography (PET) using the μOR selective radioligand [11C]carfentanil. Four TNP patients and eight gender and age-matched healthy controls were examined with PET. Patients with TNP showed reduced μOR BPND in the left nucleus accumbens (NAc), an area known to be involved in pain modulation and reward/aversive behaviors. In addition, the μOR BPND in the NAc was negatively correlated with the McGill sensory and total pain ratings in the TNP patients.
Conclusions
Our findings give preliminary evidence that the clinical pain in TNP patients can be related to alterations in the endogenous μ-opioid system, rather than only to the peripheral pathology. The decreased availability of μORs found in TNP patients, and its inverse relationship to clinical pain levels, provide insights into the central mechanisms related to this condition. The results also expand our understanding about the impact of chronic pain on the limbic system.http://deepblue.lib.umich.edu/bitstream/2027.42/112555/1/12990_2012_Article_533.pd
Ribonuclease inhibitor 1 regulates erythropoiesis by controlling GATA1 translation.
Ribosomal proteins (RP) regulate specific gene expression by selectively translating subsets of mRNAs. Indeed, in Diamond-Blackfan anemia and 5q- syndrome, mutations in RP genes lead to a specific defect in erythroid gene translation and cause anemia. Little is known about the molecular mechanisms of selective mRNA translation and involvement of ribosomal-associated factors in this process. Ribonuclease inhibitor 1 (RNH1) is a ubiquitously expressed protein that binds to and inhibits pancreatic-type ribonucleases. Here, we report that RNH1 binds to ribosomes and regulates erythropoiesis by controlling translation of the erythroid transcription factor GATA1. Rnh1-deficient mice die between embryonic days E8.5 and E10 due to impaired production of mature erythroid cells from progenitor cells. In Rnh1-deficient embryos, mRNA levels of Gata1 are normal, but GATA1 protein levels are decreased. At the molecular level, we found that RNH1 binds to the 40S subunit of ribosomes and facilitates polysome formation on Gata1 mRNA to confer transcript-specific translation. Further, RNH1 knockdown in human CD34+ progenitor cells decreased erythroid differentiation without affecting myelopoiesis. Our results reveal an unsuspected role for RNH1 in the control of GATA1 mRNA translation and erythropoiesis
Discovering hidden relationships between renal diseases and regulated genes through 3D network visualizations
Abstract
Background
In a recent study, two-dimensional (2D) network layouts were used to visualize and quantitatively analyze the relationship between chronic renal diseases and regulated genes. The results revealed complex relationships between disease type, gene specificity, and gene regulation type, which led to important insights about the underlying biological pathways. Here we describe an attempt to extend our understanding of these complex relationships by reanalyzing the data using three-dimensional (3D) network layouts, displayed through 2D and 3D viewing methods.
Findings
The 3D network layout (displayed through the 3D viewing method) revealed that genes implicated in many diseases (non-specific genes) tended to be predominantly down-regulated, whereas genes regulated in a few diseases (disease-specific genes) tended to be up-regulated. This new global relationship was quantitatively validated through comparison to 1000 random permutations of networks of the same size and distribution. Our new finding appeared to be the result of using specific features of the 3D viewing method to analyze the 3D renal network.
Conclusions
The global relationship between gene regulation and gene specificity is the first clue from human studies that there exist common mechanisms across several renal diseases, which suggest hypotheses for the underlying mechanisms. Furthermore, the study suggests hypotheses for why the 3D visualization helped to make salient a new regularity that was difficult to detect in 2D. Future research that tests these hypotheses should enable a more systematic understanding of when and how to use 3D network visualizations to reveal complex regularities in biological networks.http://deepblue.lib.umich.edu/bitstream/2027.42/112972/1/13104_2010_Article_700.pd
Probiotic Microbes Sustain Youthful Serum Testosterone Levels and Testicular Size in Aging Mice
The decline of circulating testosterone levels in aging men is associated with adverse health effects. During studies of probiotic bacteria and obesity, we discovered that male mice routinely consuming purified lactic acid bacteria originally isolated from human milk had larger testicles and increased serum testosterone levels compared to their age-matched controls. Further investigation using microscopy-assisted histomorphometry of testicular tissue showed that mice consuming Lactobacillus reuteri in their drinking water had significantly increased seminiferous tubule cross-sectional profiles and increased spermatogenesis and Leydig cell numbers per testis when compared with matched diet counterparts This showed that criteria of gonadal aging were reduced after routinely consuming a purified microbe such as L. reuteri. We tested whether these features typical of sustained reproductive fitness may be due to anti-inflammatory properties of L. reuteri, and found that testicular mass and other indicators typical of old age were similarly restored to youthful levels using systemic administration of antibodies blocking pro-inflammatory cytokine interleukin-17A. This indicated that uncontrolled host inflammatory responses contributed to the testicular atrophy phenotype in aged mice. Reduced circulating testosterone levels have been implicated in many adverse effects; dietary L. reuteri or other probiotic supplementation may provide a viable natural approach to prevention of male hypogonadism, absent the controversy and side-effects of traditional therapies, and yield practical options for management of disorders typically associated with normal aging. These novel findings suggest a potential high impact for microbe therapy in public health by imparting hormonal and gonad features of reproductive fitness typical of much younger healthy individuals.National Institutes of Health (U.S.) (Grant P30-ES002109)National Institutes of Health (U.S.) (Grant U01 CA164337)National Institutes of Health (U.S.) (Grant RO1CA108854
Microbial Reprogramming Inhibits Western Diet-Associated Obesity
A recent epidemiological study showed that eating ‘fast food’ items such as potato chips increased likelihood of obesity, whereas eating yogurt prevented age-associated weight gain in humans. It was demonstrated previously in animal models of obesity that the immune system plays a critical role in this process. Here we examined human subjects and mouse models consuming Westernized ‘fast food’ diet, and found CD4[superscript +] T helper (Th)17-biased immunity and changes in microbial communities and abdominal fat with obesity after eating the Western chow. In striking contrast, eating probiotic yogurt together with Western chow inhibited age-associated weight gain. We went on to test whether a bacteria found in yogurt may serve to lessen fat pathology by using purified Lactobacillus reuteri ATCC 6475 in drinking water. Surprisingly, we discovered that oral L. reuteri therapy alone was sufficient to change the pro-inflammatory immune cell profile and prevent abdominal fat pathology and age-associated weight gain in mice regardless of their baseline diet. These beneficial microbe effects were transferable into naïve recipient animals by purified CD4[superscript +] T cells alone. Specifically, bacterial effects depended upon active immune tolerance by induction of Foxp3[superscript +] regulatory T cells (Treg) and interleukin (Il)-10, without significantly changing the gut microbial ecology or reducing ad libitum caloric intake. Our finding that microbial targeting restored CD4[superscript +] T cell balance and yielded significantly leaner animals regardless of their dietary ‘fast food’ indiscretions suggests population-based approaches for weight management and enhancing public health in industrialized societies.National Institutes of Health (U.S.) (Grant P30-ES002109)National Institutes of Health (U.S.) (Grant RO1CA108854)National Institutes of Health (U.S.) (Grant P01 AI045757)National Institutes of Health (U.S.) (Grant U19 AI046130)National Institutes of Health (U.S.) (Grant U19 AI070352)National Institutes of Health (U.S.) (Grant P01 AI039671)National Institute of Neurological Disorders and Stroke (U.S.) (Jacob Javits Merit Award NS2427)The Penates FoundationNancy Taylor Foundation for Chronic Diseases, Inc
Modifying effect of dual antiplatelet therapy on incidence of stent thrombosis according to implanted drug-eluting stent type
Aim To investigate the putative modifying effect of dual antiplatelet therapy (DAPT) use on the incidence of stent thrombosis at 3 years in patients randomized to Endeavor zotarolimus-eluting stent (E-ZES) or Cypher sirolimus-eluting stent (C-SES). Methods and results Of 8709 patients in PROTECT, 4357 were randomized to E-ZES and 4352 to C-SES. Aspirin was to be given indefinitely, and clopidogrel/ticlopidine for ≥3 months or up to 12 months after implantation. Main outcome measures were definite or probable stent thrombosis at 3 years. Multivariable Cox regression analysis was applied, with stent type, DAPT, and their interaction as the main outcome determinants. Dual antiplatelet therapy adherence remained the same in the E-ZES and C-SES groups (79.6% at 1 year, 32.8% at 2 years, and 21.6% at 3 years). We observed a statistically significant (P = 0.0052) heterogeneity in treatment effect of stent type in relation to DAPT. In the absence of DAPT, stent thrombosis was lower with E-ZES vs. C-SES (adjusted hazard ratio 0.38, 95% confidence interval 0.19, 0.75; P = 0.0056). In the presence of DAPT, no difference was found (1.18; 0.79, 1.77; P = 0.43). Conclusion A strong interaction was observed between drug-eluting stent type and DAPT use, most likely prompted by the vascular healing response induced by the implanted DES system. These results suggest that the incidence of stent thrombosis in DES trials should not be evaluated independently of DAPT use, and the optimal duration of DAPT will likely depend upon stent type (Clinicaltrials.gov number NCT00476957
Reduced basal ganglia μ-opioid receptor availability in trigeminal neuropathic pain: A pilot study
<p>Abstract</p> <p>Background</p> <p>Although neuroimaging techniques have provided insights into the function of brain regions involved in Trigeminal Neuropathic Pain (TNP) in humans, there is little understanding of the molecular mechanisms affected during the course of this disorder. Understanding these processes is crucial to determine the systems involved in the development and persistence of TNP.</p> <p>Findings</p> <p>In this study, we examined the regional μ-opioid receptor (μOR) availability <it>in vivo</it> (non-displaceable binding potential BP<sub>ND</sub>) of TNP patients with positron emission tomography (PET) using the μOR selective radioligand [<sup>11</sup>C]carfentanil. Four TNP patients and eight gender and age-matched healthy controls were examined with PET. Patients with TNP showed reduced μOR BP<sub>ND</sub> in the left nucleus accumbens (NAc), an area known to be involved in pain modulation and reward/aversive behaviors. In addition, the μOR BP<sub>ND</sub> in the NAc was negatively correlated with the McGill sensory and total pain ratings in the TNP patients.</p> <p>Conclusions</p> <p>Our findings give preliminary evidence that the clinical pain in TNP patients can be related to alterations in the endogenous μ-opioid system, rather than only to the peripheral pathology. The decreased availability of μORs found in TNP patients, and its inverse relationship to clinical pain levels, provide insights into the central mechanisms related to this condition. The results also expand our understanding about the impact of chronic pain on the limbic system.</p
Reduced basal ganglia μ-opioid receptor availability in trigeminal neuropathic pain: A pilot study
Abstract Background Although neuroimaging techniques have provided insights into the function of brain regions involved in Trigeminal Neuropathic Pain (TNP) in humans, there is little understanding of the molecular mechanisms affected during the course of this disorder. Understanding these processes is crucial to determine the systems involved in the development and persistence of TNP. Findings In this study, we examined the regional μ-opioid receptor (μOR) availability in vivo (non-displaceable binding potential BPND) of TNP patients with positron emission tomography (PET) using the μOR selective radioligand [11C]carfentanil. Four TNP patients and eight gender and age-matched healthy controls were examined with PET. Patients with TNP showed reduced μOR BPND in the left nucleus accumbens (NAc), an area known to be involved in pain modulation and reward/aversive behaviors. In addition, the μOR BPND in the NAc was negatively correlated with the McGill sensory and total pain ratings in the TNP patients. Conclusions Our findings give preliminary evidence that the clinical pain in TNP patients can be related to alterations in the endogenous μ-opioid system, rather than only to the peripheral pathology. The decreased availability of μORs found in TNP patients, and its inverse relationship to clinical pain levels, provide insights into the central mechanisms related to this condition. The results also expand our understanding about the impact of chronic pain on the limbic system.</p