14 research outputs found

    Pathological Behavior in the Spectral Statistics of the Asymmetric Rotor Model

    Get PDF
    The aim of this work is to study the spectral statistics of the asymmetric rotor model (triaxial rigid rotator). The asymmetric top is classically integrable and, according to the Berry-Tabor theory, its spectral statistics should be Poissonian. Surprisingly, our numerical results show that the nearest neighbor spacing distribution P(s)P(s) and the spectral rigidity Δ3(L)\Delta_3(L) do not follow Poisson statistics. In particular, P(s)P(s) shows a sharp peak at s=1s=1 while Δ3(L)\Delta_3(L) for small values of LL follows the Poissonian predictions and asymptotically it shows large fluctuations around its mean value. Finally, we analyze the information entropy, which shows a dissolution of quantum numbers by breaking the axial symmetry of the rigid rotator.Comment: 11 pages, 7 figures, to be published in Phys. Rev.

    Semiclassical interferences and catastrophes in the ionization of Rydberg atoms by half-cycle pulses

    Get PDF
    A multi-dimensional semiclassical description of excitation of a Rydberg electron by half-cycle pulses is developed and applied to the study of energy- and angle-resolved ionization spectra. Characteristic novel phenomena observable in these spectra such as interference oscillations and semiclassical glory and rainbow scattering are discussed and related to the underlying classical dynamics of the Rydberg electron. Modifications to the predictions of the impulse approximation are examined that arise due to finite pulse durations

    Lifetime distributions in the methods of non-equilibrium statistical operator and superstatistics

    Full text link
    A family of non-equilibrium statistical operators is introduced which differ by the system age distribution over which the quasi-equilibrium (relevant) distribution is averaged. To describe the nonequilibrium states of a system we introduce a new thermodynamic parameter - the lifetime of a system. Superstatistics, introduced in works of Beck and Cohen [Physica A \textbf{322}, (2003), 267] as fluctuating quantities of intensive thermodynamical parameters, are obtained from the statistical distribution of lifetime (random time to the system degeneracy) considered as a thermodynamical parameter. It is suggested to set the mixing distribution of the fluctuating parameter in the superstatistics theory in the form of the piecewise continuous functions. The distribution of lifetime in such systems has different form on the different stages of evolution of the system. The account of the past stages of the evolution of a system can have a substantial impact on the non-equilibrium behaviour of the system in a present time moment.Comment: 18 page
    corecore