74 research outputs found

    Enhancement of efficiency in the use of light for cultivation of plants in controlled ecological systems

    Get PDF
    The problems of plant cultivation with the use of artificial lighting are related to energetics and, initially, to the lack of effective sources for photosynthesis, secondly to the necessity to supply a system with a considerable power in the form of light energy and to remove transformed thermal energy, and finally to economic considerations. These problems are solved by three ways: by the choice of effective radiation sources, design approaches, and technological methods of cultivation. Here we shall consider the first two ways

    Nonsaturable absorption in alumino-silicate bismuth-doped fibers

    Get PDF
    We report an experimental and theoretical investigation of fluorescence decay and transmission coefficient at ∼1 μm pumping for a series of bismuth (Bi) doped alumino-silicate fibers with different concentrations of Bi centers. By modeling the experimental data, we show that the excited-state absorption (ESA) and up-conversion (UC) processes are responsible for a growth of nonsaturable absorption and deviation from exponential the fluorescence decay in the fibers with an increase in Bi centers content. Assuming that Bi centers ensemble is composed of subsystems of single and paired centers, and an increase in partial weight of the latter with a Bi centers concentration growth, we can successfully explain the experimental data. Also, these assumptions allow us to estimate the constants characterizing the ESA and both homogeneous and inhomogeneous UC processes in the fibers

    E-band Telecom-Compatible 40 dB Gain High-Power Bismuth-doped Fiber Amplifier with Record Power Conversion Efficiency

    Get PDF
    Multi-band transmission is one of the key practical solutions to cope with the continuously growing demand on the capacity of optical communication networks without changing the huge existing fiber base. However, ultra-broadband communication requires the development of novel power efficient optical amplifiers operating beyond C- and L-bands, and this is a major research and technical challenge comparable to the introduction of the seminal erbium-doped fiber amplifiers that dramatically changed the optical communication sector. There are several types of optical fibers operating beyond C- and L-bands that can be used for the development of such amplifiers, specifically the fibers doped with neodymium, praseodymium, thulium, and bismuth. However, among these, Bi-doped fibers are of special interest as the most promising amplification medium because, unlike the others, different Bi-associated active centers allow amplification in an enormous band of overall width of 700 nm (1100–1800 nm). Such spectral coverage can be obtained by using different host materials, such as aluminosilicate, phosphosilicate, silica, and germanosilicate glasses. Here, we report a novel Bi-doped fiber amplifier with record characteristics for E-band amplification, including the highest power conversion efficiency among telecom-compatible E-band amplifiers reported to date. This bismuth-doped fiber amplifier (BDFA) features a maximum gain of 39.8 dB and a minimal noise figure of 4.6 dB enabled by 173 m Bi-doped fiber length. The maximum achieved power conversion efficiency of 38% is higher than that of L-band Er-doped fiber amplifiers. This performance demonstrates the high potential of BDFA for becoming the amplifier of choice in modern multi-band optical communication networks

    Bismuth doped fibre amplifier operating in Eand S- optical bands

    Get PDF
    Bismuth-doped fibre amplifiers offer an attractive solution for expanding the bandwidth of fibre-optic telecommunication systems beyond the current C-band (1530-1565 nm). We report a bismuth-doped fibre amplifier in the spectral range from 1370 to 1490 nm, with a maximum gain exceeding 31 dB, and a noise figure as low as 4.75 dB. The developed system is studied for forward, backward, and bi-directional pumping schemes and three different signal power levels. The forward pumping scheme demonstrates the best performance in terms of the achieved noise figure. The developed amplifier can be potentially used as an in-line amplifier with >20dB gain in the spectral band from 1405 to 1460 nm

    Terahertz ratchet effects in graphene with a lateral superlattice

    Get PDF
    Experimental and theoretical studies on ratchet effects in graphene with a lateral superlattice excited by alternating electric fields of terahertz frequency range are presented. A lateral superlattice deposited on top of monolayer graphene is formed either by periodically repeated metal stripes having different widths and spacings or by interdigitated comblike dual-grating-gate (DGG) structures. We show that the ratchet photocurrent excited by terahertz radiation and sensitive to the radiation polarization state can be efficiently controlled by the back gate driving the system through the Dirac point as well as by the lateral asymmetry varied by applying unequal voltages to the DGG subgratings. The ratchet photocurrent includes the Seebeck thermoratchet effect as well as the effects of "linear" and "circular" ratchets, sensitive to the corresponding polarization of the driving electromagnetic force. The experimental data are analyzed for the electronic and plasmonic ratchets taking into account the calculated potential profile and the near field acting on carriers in graphene. We show that the photocurrent generation is based on a combined action of a spatially periodic in-plane potential and the spatially modulated light due to the near-field effects of the light diffraction

    High Power Tunable CW Raman fiber laser

    No full text

    Tm3+-doped CW fiber laser based on a highly GeO2-doped dispersion shifted fiber

    No full text

    Stability of Fiber Bragg Gratings Fabricated Using UV Ar+ and ArF Excimer in Bismuth-Aluminum-co-Doped Silica Fibers

    No full text
    Continuous annealing of fiber Bragg gratings fabricated using cw and pulsed laser irradiation in Bi-Al-co-doped fibers of different concentrations show activation energy spectra linked to Bi-Al. Thermal stability maps were obtained by their analytical representatio

    Paper Session II-B - The Possibility of Using Plants in Life-Support Systems During Long-Term Space Flights

    No full text
    No other information or file available for this session
    • …
    corecore