28 research outputs found

    Neurotransmitter Detection Using Corona Phase Molecular Recognition on Fluorescent Single-Walled Carbon Nanotube Sensors

    Full text link
    ABSTRACT: Temporal and spatial changes in neurotransmitter concentrations are central to information processing in neural networks. Therefore, biosensors for neurotransmitters are essential tools for neuroscience. In this work, we applied a new technique, corona phase molecular recognition (CoPhMoRe), to identify adsorbed polymer phases on fluorescent single-walled carbon nanotubes (SWCNTs) that allow for the selective detection of specific neurotransmitters, including dopamine. We functionalized and suspended SWCNTs with a library of different polymers (n = 30) containing phospholipids, nucleic acids, and amphiphilic polymers to study how neurotransmitters modulate the resulting band gap, near-infrared (nIR) fluorescence of the SWCNT. We identified several corona phases that enable the selective detection of neurotransmitters. Catecholamines such as dopamine increased the fluorescence of specific single-stranded DNA- and RNA-wrapped SWCNTs by 58−80 % upon addition of 100 ÎŒM dopamine depending on the SWCNT chirality (n,m). In solution, the limit of detection was 11 nM [Kd = 433 nM for (GT)15 DNA-wrapped SWCNTs]. Mechanistic studies revealed that this turn-on response is due to an increase in fluorescence quantum yield and not covalent modification of the SWCNT or scavenging o

    SNAP-tag based FRET Indicator for GABA and Synthetic GABAB Receptor Ligands

    No full text
    Whilst γ-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the central nervous system (CNS), suitable tools to measure its concentration in living cells with high spatiotemporal resolution are missing. This thesis describes the first ratiometric fluorescent sensor for GABA – dubbed GABA-Snifit – which senses GABA with high specificity and spatiotemporal resolution on the surface of living mammalian cells. GABA- Snifit is a semisynthetic fusion protein containing the GABAB receptor, SNAP- and CLIP- tag, a synthetic fluorophore and a fluorescent GABAB receptor antagonist. When assembled on cell surfaces, GABA-Snifit displays a GABA-dependent fluorescence emission spectrum in the range of 500-700 nm that permits to sense micromolar to millimolar GABA concentrations. The ratiometric change of the sensor on living cells is 1.8. Furthermore, GABA-Snifit can be utilized to quantify the relative binding affinities of GABAB receptor agonists, antagonists and allosteric modulators. These properties make GABA-Snifit a valuable tool to investigate the role of GABA and GABAB in biological systems

    A Fluorescent Sensor for GABA and Synthetic GABA(B) Receptor Ligands

    No full text
    While gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter, suitable tools to measure its concentration in living cells with high spatiotemporal resolution are missing. Herein, we describe the first ratiometric fluorescent sensor for GABA, dubbed GABA-Snifit, which senses GABA with high specificity and spatiotemporal resolution on the surface of living mammalian cells. GABA-Snifit is a semisynthetic fusion protein containing the GABA(B) receptor, SNAP- and CLIP-tag, a synthetic fluorophore and a fluorescent GABA(B) receptor antagonist. When assembled on cell surfaces, GABA-Snifit displays a GABA-dependent fluorescence emission spectrum in the range of 500-700 nm that permits sensing micromolar to millimolar GABA concentrations. The ratiometric change of the sensor on living cells is 1.8. Furthermore, GABA-Snifit can be utilized to quantify the relative binding affinities of GABA(B) receptor agonists, antagonists and the effect of allosteric modulators. These properties make GABA-Snifit a valuable tool to investigate the role of GABA and GABA(B) in biological systems

    A Fluorescent Sensor for GABA and Synthetic GABA<sub>B</sub> Receptor Ligands

    No full text
    While γ-aminobutyric acid (GABA) is the main inhibitory neurotransmitter, suitable tools to measure its concentration in living cells with high spatiotemporal resolution are missing. Herein, we describe the first ratiometric fluorescent sensor for GABA, dubbed GABA-Snifit, which senses GABA with high specificity and spatiotemporal resolution on the surface of living mammalian cells. GABA-Snifit is a semisynthetic fusion protein containing the GABA<sub>B</sub> receptor, SNAP- and CLIP-tag, a synthetic fluorophore and a fluorescent GABA<sub>B</sub> receptor antagonist. When assembled on cell surfaces, GABA-Snifit displays a GABA-dependent fluorescence emission spectrum in the range of 500–700 nm that permits sensing micromolar to millimolar GABA concentrations. The ratiometric change of the sensor on living cells is 1.8. Furthermore, GABA-Snifit can be utilized to quantify the relative binding affinities of GABA<sub>B</sub> receptor agonists, antagonists and the effect of allosteric modulators. These properties make GABA-Snifit a valuable tool to investigate the role of GABA and GABA<sub>B</sub> in biological systems

    Visualizing biochemical activities in living cells through chemistry.

    No full text
    The development of molecular probes to visualize cellular processes is an important challenge in chemical biology. One possibility to create such cellular indicators is based on the selective labeling of proteins with synthetic probes in living cells. Over the last years, our laboratory has developed different labeling approaches for monitoring protein activity and for localizing synthetic probes inside living cells. In this article, we review two of these labeling approaches, the SNAP-tag and CLIP-tag technologies, and their use for studying cellular processes

    Visualizing Biochemical Activities in Living Cells through Chemistry

    Get PDF
    The development of molecular probes to visualize cellular processes is an important challenge in chemical biology. One possibility to create such cellular indicators is based on the selective labeling of proteins with synthetic probes in living cells. Over the last years, our laboratory has developed different labeling approaches for monitoring protein activity and for localizing synthetic probes inside living cells. In this article, we review two of these labeling approaches, the SNAP-tag and CLIP-tag technologies, and their use for studying cellular processes

    Development of SNAP-tag fluorogenic probes for wash-free fluorescence imaging

    No full text
    The ability to specifically attach chemical probes to individual proteins represents a powerful approach to the study and manipulation of protein function in living cells. It provides a simple, robust and versatile approach to the imaging of fusion proteins in a wide range of experimental settings. However, a potential drawback of detection using chemical probes is the fluorescence background from unreacted or nonspecifically bound probes. In this report we present the design and application of novel fluorogenic probes for labeling SNAP-tag fusion proteins in living cells. SNAP-tag is an engineered variant of the human repair protein O(6)-alkylguanine-DNA alkyltransferase (hAGT) that covalently reacts with benzylguanine derivatives. Reporter groups attached to the benzyl moiety become covalently attached to the SNAP tag while the guanine acts as a leaving group. Incorporation of a quencher on the guanine group ensures that the benzylguanine probe becomes highly fluorescent only upon labeling of the SNAP-tag protein. We describe the use of intramolecularly quenched probes for wash-free labeling of cell surface-localized epidermal growth factor receptor (EGFR) fused to SNAP-tag and for direct quantification of SNAP-tagged ÎČ-tubulin in cell lysates. In addition, we have characterized a fast-labeling variant of SNAP-tag, termed SNAP(f), which displays up to a tenfold increase in its reactivity towards benzylguanine substrates. The presented data demonstrate that the combination of SNAP(f) and the fluorogenic substrates greatly reduces the background fluorescence for labeling and imaging applications. This approach enables highly sensitive spatiotemporal investigation of protein dynamics in living cells

    Fluorogenic probes for live-cell imaging of the cytoskeleton

    Get PDF
    We introduce far-red, fluorogenic probes that combine minimal cytotoxicity with excellent brightness and photostability for fluorescence imaging of actin and tubulin in living cells. Applied in stimulated emission depletion (STED) microscopy, they reveal the ninefold symmetry of the centrosome and the spatial organization of actin in the axon of cultured rat neurons with a resolution unprecedented for imaging cytoskeletal structures in living cells
    corecore