5,871 research outputs found

    A Spectrometer to Study Elastic and Diffractive Physics at LHC

    Get PDF
    The possibility to study elastic and diffractive physics in pp collisions at LHC is investigated. For this purpose we have considered detectors close to the beam in conjunction with the magnetic elements of the accelerator to provide a high precision spectrometer for very forward final state protons. The geometrical acceptance is given and momentum resolution is calculated for different spatial resolution detectors.Comment: 26 pages, 13 figures, Latex, submitted in International Journal of Modern Physics

    Reflectivity measurements in uniaxial superconductors: a methodological discussion applied to the case of La(2-x)Sr(x)CuO(4)

    Full text link
    Most of the novel superconductors are uniaxial crystals, with metallic planes (abab) orthogonal to an insulating axis (cc). Far-infrared measurements of the reflectivity Rab(ω)R_{ab} (\omega) provide valuable information on their low-energy electrodynamics, but involve delicate experimental issues. Two of them are a possible contamination of Rab(ω)R_{ab} (\omega) from the c axis and the extrapolation of the RabR_{ab} data to ω\omega =0, both above and below TcT_c. Here we discuss quantitatively these issues with particular regard to La2x_{2-x}Srx_xCuO4+y_{4+y}, one of the most studied high-TcT_c materials.Comment: 13 pages with 3 Fig

    Focusing on the extended X-ray emission in 3C 459 with a Chandra follow-up observation

    Get PDF
    6 pages, 4 figures. Reproduced with permission from Astronomy & Astrophysics. © 2019 ESO.Aims. We investigated the X-ray emission properties of the powerful radio galaxy 3C 459 revealed by a recent Chandra follow-up observation carried out in October 2014 with a 62 ks exposure. Methods. We performed an X-ray spectral analysis from a few selected regions on an image obtained from this observation and also compared the X-ray image with a 4.9 GHz VLA radio map available in the literature. Results. The dominant contribution comes from the radio core but significant X-ray emission is detected at larger angular separations from it, surrounding both radio jets and lobes. According to a scenario in which the extended X-ray emission is due to a plasma collisionally heated by jet-driven shocks and not magnetically dominated, we estimated its temperature to be ∼0.8 keV. This hot gas cocoon could be responsible for the radio depolarization observed in 3C 459, as recently proposed also for 3C 171 and 3C 305. On the other hand, our spectral analysis and the presence of an oxygen K edge, blueshifted at 1.23 keV, cannot exclude the possibility that the X-ray radiation originating from the inner regions of the radio galaxy could be intercepted by some outflow of absorbing material intervening along the line of sight, as already found in some BAL quasars.Peer reviewe

    Can We Detect the Anisotropic Shapes of Quasar HII Regions During Reionization Through The Small-Scale Redshifted 21cm Power Spectrum?

    Full text link
    Light travel time delays distort the apparent shapes of HII regions surrounding bright quasars during early stages of cosmic reionization. Individual HII regions may remain undetectable in forthcoming redshifted 21 cm experiments. However, the systematic deformation along the line of sight may be detectable statistically, either by stacking tomographic 21cm images of quasars identified, for example, by JWST, or as small-scale anisotropy in the three-dimensional 21cm power spectrum. Here we consider the detectability of this effect. The anisotropy is largest when HII regions are large and expand rapidly, and we find that if bright quasars contributed to the early stages of reionization, then they can produce significant anisotropy, on scales comparable to the typical sizes of HII regions of the bright quasars (approx. 30 Mpc and below). The effect therefore cannot be ignored when analyzing future 21cm power spectra on small scales. If 10 percent of the volume of the IGM at redshift z=10 is ionized by quasars with typical ionizing luminosity of S= 5 x 10^{56} photons/second, the distortions can enhance by more than 10 percent the 21cm power spectrum in the radial (redshift) direction, relative to the transverse directions. The level of this anisotropy exceeds that due to redshift-space distortion, and has the opposite sign. We show that on-going experiments such as MWA should be able to detect this effect. A detection would reveal the presence of bright quasars, and shed light on the ionizing yield and age of the ionizing sources, and the distribution and small-scale clumping of neutral intergalactic gas in their vicinity.Comment: Version accepted by ApJ, with new fiducial model and improved discussio

    Fixation of genetic variation and optimization of gene expression: The speed of evolution in isolated lizard populations undergoing Reverse Island Syndrome

    Get PDF
    The ecological theory of island biogeography suggests that mainland populations should be more genetically divergent from those on large and distant islands rather than from those on small and close islets. Some island populations do not evolve in a linear way, but the process of divergence occurs more rapidly because they undergo a series of phenotypic changes, jointly known as the Island Syndrome. A special case is Reversed Island Syndrome (RIS), in which populations show drastic phenotypic changes both in body shape, skin colouration, age of sexual maturity, aggressiveness, and food intake rates. The populations showing the RIS were observed on islets nearby mainland and recently raised, and for this they are useful models to study the occurrence of rapid evolutionary change. We investigated the timing and mode of evolution of lizard populations adapted through selection on small islets. For our analyses, we used an ad hoc model system of three populations: wild-type lizards from the mainland and insular lizards from a big island (Capri, Italy), both Podarcis siculus siculus not affected by the syndrome, and a lizard population from islet (Scopolo) undergoing the RIS (called P. s. coerulea because of their melanism). The split time of the big (Capri) and small (Scopolo) islands was determined using geological events, like sea-level rises. To infer molecular evolution, we compared five complete mitochondrial genomes for each population to reconstruct the phylogeography and estimate the divergence time between island and mainland lizards. We found a lower mitochondrial mutation rate in Scopolo lizards despite the phenotypic changes achieved in approximately 8,000 years. Furthermore, transcriptome analyses showed significant differential gene expression between islet and mainland lizard populations, suggesting the key role of plasticity in these unpredictable environments

    Galaxy formation with radiative and chemical feedback

    Get PDF
    Here we introduce GAMESH, a novel pipeline which implements self-consistent radiative and chemical feedback in a computational model of galaxy formation. By combining the cosmological chemical-evolution model GAMETE with the radiative transfer code CRASH, GAMESH can post process realistic outputs of a N-body simulation describing the redshift evolution of the forming galaxy. After introducing the GAMESH implementation and its features, we apply the code to a low-resolution N-body simulation of the Milky Way formation and we investigate the combined effects of self-consistent radiative and chemical feedback. Many physical properties, which can be directly compared with observations in the Galaxy and its surrounding satellites, are predicted by the code along the merger-tree assembly. The resulting redshift evolution of the Local Group star formation rates, reionisation and metal enrichment along with the predicted Metallicity Distribution Function of halo stars are critically compared with observations. We discuss the merits and limitations of the first release of GAMESH, also opening new directions to a full implementation of feedback processes in galaxy formation models by combining semi-analytic and numerical methods.Comment: This version has coloured figures not present in the printed version. Submitted to MNRAS, minor revision

    Effect of Mn substitution by Ga on the optical properties of a metallic manganite

    Full text link
    In a metallic manganite like La(2/3)Sr(1/3)MnO(3), the substitution of Mn(+3) by Ga(+3) dilutes the ferromagnetic order and locally cancels the Jahn-Teller distortion, without heavily affecting the crystal structure. One can thus follow the changes in the charge dynamics induced by Ga, until the ferro-metallic manganite is turned into an insulator. Here this phenomenon is studied in detail through the infrared reflectivity of five samples of La(2/3)Sr(1/3)Mn(1-x)Ga(x)O(3), with x increasing from 0 to 0.30 and for 50 < T < 320 K. A simple model which links the measured optical parameters to the magnetization M(x, T) well describes the behavior of the plasma frequency, the scattering rate, and the mid-infrared absorption along the metal-to-insulator transition.Comment: 8 pages including 7 figure

    Observation of charge-density-wave excitations in manganites

    Get PDF
    In the optical conductivity of four different manganites with commensurate charge order (CO), strong peaks appear in the meV range below the ordering temperature T_{CO}. They are similar to those reported for one-dimensional charge density waves (CDW) and are assigned to pinned phasons. The peaks and their overtones allow one to obtain, for La{1-n/8}Ca{n/8}$MnO{3} with n = 5, 6, the electron-phonon coupling, the effective mass of the CO system, and its contribution to the dielectric constant. These results support a description of the CO in La-Ca manganites in terms of moderately weak-coupling and of the CDW theory.Comment: To be published on Phys. Rev. Let
    corecore