38 research outputs found

    Warp evidences in precessing galactic bar models

    Get PDF
    Most galaxies have a warped shape when they are seen from an edge-on point of view. The reason for this curious form is not completely known so far and in this work we apply dynamical system tools to contribute to its explanation. Starting from a simple, but realistic, model formed by a bar and a disc, we study the effect produced by a small misalignment between the angular momentum of the system and its angular velocity. To this end, a precession model is developed and considered, assuming that the bar behaves like a rigid body. After checking that the periodic orbits inside the bar keep being the skeleton of the inner system, even after inflicting a precession to the potential, we compute the invariant manifolds of the unstable periodic orbits departing from the equilibrium points at the ends of the bar to get evidences of their warped shapes. As it is well known, the invariant manifolds associated with these periodic orbits drive the arms and rings of barred galaxies and constitute the skeleton of these building blocks. Looking at them from a side-on viewpoint, we find that these manifolds present warped shapes as those recognized in observations. Lastly, test particle simulations have been performed to determine how the stars are affected by the applied precession, confirming this way the theoretical results obtained.Comment: 14 pages, 21 figures, Accepted for publication in A&A (15th Jan 2016

    Com les varietats invariants formen espirals i anells en galaxies barrades

    Get PDF
    L'espectacularitat de les galàxies barrades consisteix no solament en la presència de la barra, allargada en el centre de la galàxia, sinó també en els braços espirals o anells que es desenvolupen en les parts exteriors. No hi ha una teoria clara per a la formació d'anells i, fins fa poc, només n'hi havia una que explicava l'origen dels braços espirals en galàxies no barrades. En els darrers anys hem desenvolupat una teoria basada en els sistemes dinàmics que relaciona els braços espirals i els anells amb les varietats invariants hiperbòliques associades a òrbites periòdiques i quasiperiòdiques al voltant de punts d'equilibri colineals del sistema.The spectacularity of barred galaxies resides not only in the presence of their bars, extended in the center of the galaxy, but also in the rings and spiral arms developed in the exterior regions. There is no clear theory on the rings formation and, until recently, there was only one explaining the origin of spiral arms in non-barred galaxies. In recent years, and based on dynamical systems, we have developed a theory that relates rings and spiral arms with hyperbolic invariant manifolds associated with periodic and quasiperiodic orbits about the collinear points of the system

    A Motivating Exploration on Lunar Craters and Low-Energy Dynamics in the Earth -- Moon System

    Full text link
    It is known that most of the craters on the surface of the Moon were created by the collision of minor bodies of the Solar System. Main Belt Asteroids, which can approach the terrestrial planets as a consequence of different types of resonance, are actually the main responsible for this phenomenon. Our aim is to investigate the impact distributions on the lunar surface that low-energy dynamics can provide. As a first approximation, we exploit the hyberbolic invariant manifolds associated with the central invariant manifold around the equilibrium point L_2 of the Earth - Moon system within the framework of the Circular Restricted Three - Body Problem. Taking transit trajectories at several energy levels, we look for orbits intersecting the surface of the Moon and we attempt to define a relationship between longitude and latitude of arrival and lunar craters density. Then, we add the gravitational effect of the Sun by considering the Bicircular Restricted Four - Body Problem. As further exploration, we assume an uniform density of impact on the lunar surface, looking for the regions in the Earth - Moon neighbourhood these colliding trajectories have to come from. It turns out that low-energy ejecta originated from high-energy impacts are also responsible of the phenomenon we are considering.Comment: The paper is being published in Celestial Mechanics and Dynamical Astronomy, vol. 107 (2010

    High-fidelity trajectory design to flyby near-Earth asteroids using CubeSats

    Get PDF
    Fast development of CubeSat technology now enables the first interplanetary missions. The potential application of CubeSats to flyby near-Earth asteroids is explored in this paper in consideration of CubeSats' limited propulsive capabilities and systems constraints. Low-energy asteroid flyby trajectories are designed assuming a CubeSat is initially parked around to the Sun-Earth Lagrange points. High-impulse and low-thrust trajectories with realistic thrusting models are computed first in the Circular Restricted Three-Body Problem (CR3BP), and then in a high-fidelity ephemeris model. Analysis in the ephemeris model is used to confirm that trajectories computed in the CR3BP model also exist in a more realistic dynamical model, and to verify the validity of the results obtained in CR3BP analysis. A catalogue of asteroid flyby opportunities between years 2019 and 2030 is provided, with 80 m/s of available ΔV and departure from halo orbits around the first and second Sun-Earth Lagrange points (of similar size to those typically used by scientific missions). Results show that the CR3BP model can serve as an effective tool to identify reachable asteroids and can provide an initial estimation of the ΔV cost in the ephemeris model (with ±15 m/s accuracy). An impulsive maneuver model can also provide an accurate estimation of the ΔV requirement for a CubeSat equipped with a high-impulse thruster (with 4 m/s accuracy), even if its thrust magnitude is small and requires duty cycling; low-thrust ΔV requirements, however, may differ significantly from the impulsive results (±15 m/s)

    Design of Ganymede-synchronous frozen orbit around Europa

    Get PDF
    A Ganymede-synchronous frozen orbit around Europa provides a stable spatial geometry between a Europa probe and a Ganymede lander, which facilitates the observation of Ganymede and data transmission between probes. However, the third-body gravitation perturbation of Ganymede continues to accumulate and affect the long-term evolution of the Europa probe. In this paper, the relative orbit of Ganymede with respect to Europa is considered to accurately capture the perturbation potential. The orbital evolution behaviors of the Europa probe under the non-spherical gravitation of Europa and the third-body gravitation of Jupiter and Ganymede are studied based on a double-averaging framework. Then, the initial orbital conditions of the Ganymede-synchronous frozen orbit are developed. A station-keeping maneuver was performed to maintain the orbital elements to achieve the Ganymede-synchronous and frozen behaviors. A numerical simulation showed that the consumption for orbital maintenance is acceptable

    An Adaptive Remeshing Procedure for Proximity Maneuvering Spacecraft Formations

    Get PDF
    We consider a methodology to optimally obtain reconfigurations of spacecraft formations. It is based on the discretization of the time interval in subintervals (called the mesh) and the obtainment of local solutions on them as a result of a variational method. Applied to a libration point orbit scenario, in this work we focus on how to find optimal meshes using an adaptive remeshing procedure and on the determination of the parameter that governs it
    corecore