247 research outputs found

    Testing the Debye Function Approach on a Laboratory X-ray Powder Diffraction Equipment. A Critical Study

    Get PDF
    Total Scattering Methods are nowadays widely used for the characterization of defective and nanosized materials. They commonly rely on highly accurate neutron and synchrotron diffraction data collected at dedicated beamlines. Here, we compare the results obtained on conventional laboratory equipment and synchrotron radiation when adopting the Debye Function Analysis method on a simple nanocrystalline material (a synthetic iron oxide with average particle size near to 10nm). Such comparison, which includes the cubic lattice parameter, the sample stoichiometry and the microstructural (size-distribution) analyses, highlights the limitations, but also some strengthening points, of dealing with conventional powder diffraction data collections on nanocrystalline material

    Energy Transfer from Magnetic Iron Oxide Nanoparticles: Implications for Magnetic Hyperthermia

    Get PDF
    Magnetic iron oxide nanoparticles (IONPs) have gained momentum in the field of biomedical applications. They can be remotely heated via alternating magnetic fields, and such heat can be transferred from the IONPs to the local environment. However, the microscopic mechanism of heat transfer is still debated. By X-ray total scattering experiments and first-principles simulations, we show how such heat transfer can occur. After establishing structural and microstructural properties of the maghemite phase of the IONPs, we built a maghemite model functionalized with aminoalkoxysilane, a molecule used to anchor (bio)molecules to oxide surfaces. By a linear response theory approach, we reveal that a resonance mechanism is responsible for the heat transfer from the IONPs to the surroundings. Heat transfer occurs not only via covalent linkages with the IONP but also through the solvent hydrogen-bond network. This result may pave the way to exploit the directional control of the heat flow from the IONPs to the anchored molecules─i.e., antibiotics, therapeutics, and enzymes─for their activation or release in a broader range of medical and industrial applications

    Trihexyphenidyl hydro­chloride: a powder diffraction study

    Get PDF
    In the cation of the title compound [systematic name: 1-(3-cyclo­hexyl-3-hy­droxy-3-phenyl­prop­yl)piperidinium chloride], C20H32NO+·Cl−, the cyclo­hexyl and piperidine rings are in chair conformations. In the crystal structure, cations and anions are linked into chains along the c-axis direction via O—H⋯Cl and N—H⋯Cl hydrogen bonds. Weak inter­molecular C—H⋯Cl inter­actions link further these chains into layers parallel to the bc plane. The salt, obtained from a racemic solution, was found to crystallize in the chiral P21212 space group, indicating that, in the absence of any evident chirality-inducing process, the polycrystalline powders consist of an equivalent mixture of R and S enanti­omers, forming a racemic conglomerate

    Heterovalent BiIII/PbII ionic substitution in one-dimensional trimethylsulfoxonium halide pseudo-perovskites (X = I, Br)

    Get PDF
    We report on the synthesis and characterization of novel lead and bismuth hybrid (organic 12inorganic) iodide and bromide pseudo-perovskites (ABX3) containing the trimethylsulfoxonium cation (CH3)3SO+ (TMSO) in the A site, Pb/Bi in the Bsite, and Br or I as X anions. All of these compounds are isomorphic and crystallize in the orthorhombic Pnma space group. Lead-based pseudo-perovskites consist of one-dimensional (1D) chains of facesharing [PbX6] octahedra, while in the bismuth-based ones, the chains of [BiX6] are interrupted, with one vacancy every third site,leading to a zero-dimensional (0D) local structure based on separated [Bi2I9] 3 12 dimers. Five solid solutions for the iodide with different Pb2 +/Bi3 + ratios between (TMSO)PbI3 and (TMSO)3Bi2I9, and two for the bromide counterparts, were synthetized. Due to the charge compensation mechanism, these systems are best described by the (TMSO)3Pb3xBi2(1 12x)I9 (x = 0.98, 0.92, 0.89, 0.56, and 0.33) and (TMSO)3Pb3xBi2(1 12x)Br9 (x = 0.83 and 0.37) formulae. X-ray powder diffraction (XRPD) measurements were employed to determine the crystal structure of all studied species and further used to test the metal cation miscibility within monophasic samples not showing cation segregation. These systems can be described through an ionic defectivity on the pseudo-perovskite B site, where the Pb2+/Bi3+ replacement is compensated by one Pb2+ vacancy for every Bi3+ pair. This leads to a wide range of possible different (numerical and geometrical) chain configurations, leading to the unique features observed in XRPD patterns. The optical band gap of the iodide samples falls in the 2.11 122.74 eV range and decreases upon increasing the Bi3+ content. Interestingly, even a very low loading of Bi3+ (1%) is sufficient to reduce the band gap substantially from 2.74 to 2.25 eV. Periodic density functional theory (DFT) calculations were used to simulate the atomic and electronic structures of our samples, with predicted band gap trends in good agreement with the experimental ones. This work highlights the structural flexibility of such systems and accurately interprets the ionic defectivity of the different pseudo-perovskite structures

    Thermally induced interconversions of metal-pyrimidine-4,6-dicarboxylate polymers: A structural, spectroscopic, and magnetic study

    Get PDF
    Continuing our work on the structural and magnetic aspects of the one-dimensional (1-D) coordination polymers of the [M(pmdc)(H2O)2]\ub7H2O kind (M Fe, Co, Ni, Cu, Zn; pmdc pyrimidine-4,6-dicarboxylate), we have combined ab initio X-ray powder diffraction methods with in situ thermodiffractometry and thermal analyses to characterize the selective and reversible transformation of the [M(pmdc)(H2O)2]\ub7H2O compounds (M Fe, Co, Ni, Cu) into the bis-hydrated [M(pmdc)(H2O)2] counterparts by moderate heating, which is followed by an irreversible transformation into two-dimensional (2-D) anhydrous species. The structural features of the transient bis-hydrated species and of the completely dehydrated one are described for M Cu. Remarkably, the \ufb01rst dehydration process does not alter the 1-D nature of the [M(pmdc)(H2O)2] chains; on the contrary, the second dehydration gives rise to the loss of the axially coordinated water molecules with a concomitant condensation of the 1-D chains into 2-D layers through ancillary carboxylate bridging groups. The magnetic properties of the anhydrous [M(pmdc)] species (M Co, Ni, Cu) have been investigated, showing that these phases behave as 1-D antiferromagnets with interchain interactions. Notably, in the case of the [Ni(pmdc)] system, a weak ferromagnetic ordering, arising from a spin canting phenomenon with a blocking temperature of 13 K, is observed

    The role of nanoparticle structure and morphology in the dissolution kinetics and nutrient release of nitrate‑doped calcium phosphate nanofertilizers

    Get PDF
    Bio-inspired synthetic calcium phosphate (CaP) nanoparticles (NPs), mimicking the mineral component of bone and teeth, are emergent materials for sustainable applications in agriculture. These sparingly soluble salts show self-inhibiting dissolution processes in undersaturated aqueous media, the control at the molecular and nanoscale levels of which is not fully elucidated. Understanding the mechanisms of particle dissolution is highly relevant to the efcient delivery of macronutrients to the plants and crucial for developing a valuable synthesis-by-design approach. It has also implications in bone (de)mineralization processes. Herein, we shed light on the role of size, morphology and crystallinity in the dissolution behaviour of CaP NPs and on their nitrate doping for potential use as (P,N)-nanofertilizers. Spherical fully amorphous NPs and apatite-amorphous nanoplatelets (NPLs) in a core-crown arrangement are studied by combining forefront Small-Angle and Wide-Angle X-ray Total Scattering (SAXS and WAXTS) analyses. ­Ca2+ ion release rates difer for spherical NPs and NPLs demonstrating that morphology plays an active role in directing the dissolution kinetics. Amorphous NPs manifest a rapid loss of nitrates governed by surface-chemistry. NPLs show much slower release, paralleling that of ­Ca2+ ions, that supports both detectable nitrate incorporation in the apatite structure and dissolution from the core basal faces.Fondazione Cariplo 2016-0648FEDER/Ministerio de Ciencia, Innovacion y Universidades-Agencia Estatal de Investigacion (FEDER/MCIU/AEI, Spain) through the project NanoVIT RTI-2018-095794-A-C22FEDER/Ministerio de Ciencia, Innovacion y Universidades-Agencia Estatal de Investigacion (FEDER/MCIU/AEI, Spain) through the project NanoSmart RYC-2016-21042FEDER/MCIU/AEI within the Juan de la Cierva Program (JdC2017
    corecore