94 research outputs found

    Assessment of full carbon budget of Italy: the CarbIUS project

    Get PDF
    Regional carbon balances, funded, for the Italian side, by the Italian Ministry of Environment in the context of a bilateral agreement to develop scientific collaborations in Global Change Research between Italy and USA signed in 2001. The two regions selected are Italy and Oregon-California; there are many similarities between these two regions (climate, vegetation, topography, population pressure, etc.) but, on other hand, there are also interesting contrasts in societal aspects like demography, land-use history and emissions. The main CarbIUS objectives are 1) the identification of spatial and temporal variability of carbon sources and sinks and the relative contribution of the different anthropogenic and biogenic components, 2) the impact of land use changes and human population dynamics on the carbon balance, 3) the quantification of the effects of climate and natural disturbances on the terrestrial carbon stocks and fluxes and 4) the application of new methodologies to investigate carbon metabolism at the plot, ecosystem and regional scale. In this paper will be presented the methodologies that we are using to assess the contribution of the different components to the full carbon budget, like carbon stocks and fluxes, disturbances (harvesting, wild forest fires and forest pathology), CH4 and NO2 fluxes and anthropogenic emissions. All these information will be input in a Data Assimilation System and the results will be validated using sub-regional airborne measurements of carbon fluxes

    Over-the-scope clips in the treatment of gastrointestinal tract iatrogenic perforation: a multicenter retrospective study and a classification of gastrointestinal tract perforations

    Get PDF
    AIM: To determine the outcome of the management of iatrogenic gastrointestinal tract perforations treated by over-the-scope clip (OTSC) placement. METHODS: We retrospectively enrolled 20 patients (13 female and 7 male; mean age: 70.6 ± 9.8 years) in eight high-volume tertiary referral centers with upper or lower iatrogenic gastrointestinal tract perforation treated by OTSC placement. Gastrointestinal tract perforation could be with oval-shape or with round-shape. Oval- shape perforations were closed by OTSC only by suction and the round-shape by the “twin-grasper” plus suction. RESULTS: Main perforation diameter was 10.1 ± 4.3 mm (range 3-18 mm). The technical success rate was 100% (20/20 patients) and the clinical success rate was 90% (18/20 patients). Two patients (10%) who did not have complete sealing of the defect underwent surgery. Based upon our observations we propose two types of perforation: Round-shape “type-1 perforation” and oval-shape “type-2 perforation”. Eight (40%) out of the 20 patients had a type-1 perforation and 12 patients a type-2 (60%). CONCLUSION: OTSC placement should be attempted after perforation occurring during diagnostic or thera- peutic endoscopy. A failed closure attempt does not impair subsequent surgical treatment

    Magnetic resonance imaging for diagnostic workup of Embolic Stroke of Undetermined Source: a systematic review

    Get PDF
    Background: Embolic stroke of undetermined source (ESUS) refers to ischemic stroke where the underlying cause of thromboembolism cannot be found despite the recommended diagnostic workup. Unidentified source of emboli hinders clinical decision-making and patient management with detrimental consequences on long-term prognosis. The rapid development and versatility of magnetic resonance imaging (MRI) make it an appealing addition to the diagnostic routine of patients with ESUS for the assessment of potential vascular and cardiac embolic sources. Aims: To review the use of MRI in the identification of cardiac and vascular embolic sources in ESUS and to assess the reclassification value of MRI examinations added to the conventional workup of ESUS. Summary of review: We reviewed the use of cardiac and vascular MRI for the identification of a variety of embolic sources associated with ESUS, including atrial cardiomyopathy, left ventricular pathologies, and supracervical atherosclerosis in carotid and intracranial arteries and in distal thoracic aorta. The additional reclassification after MRI examinations added to the workup of patients with ESUS ranged from 6.1% to 82.3% and varied depending on the combination of imaging modalities. Conclusion: MRI techniques allow us to identify additional cardiac and vascular embolic sources and may further decrease the prevalence of patients with the diagnosis of ESUS

    Galaxy Counts at 24 Microns in the SWIRE Fields

    Get PDF
    This paper presents galaxy source counts at 24 microns in the six Spitzer Wide-field InfraRed Extragalactic (SWIRE) fields. The source counts are compared to counts in other fields, and to model predictions that have been updated since the launch of Spitzer. This analysis confirms a very steep rise in the Euclidean-normalized differential number counts between 2 mJy and 0.3 mJy. Variations in the counts between fields show the effects of sample variance in the flux range 0.5-10 mJy, up to 100% larger than Poisson errors. Nonetheless, a "shoulder" in the normalized counts persists at around 3 mJy. The peak of the normalized counts at 0.3 mJy is higher and narrower than most models predict. In the ELAIS N1 field, the 24 micron data are combined with Spitzer-IRAC data and five-band optical imaging, and these bandmerged data are fit with photometric redshift templates. Above 1 mJy the counts are dominated by galaxies at z less than 0.3. By 300 microJy, about 25% are between z ~ 0.3-0.8, and a significant fraction are at z ~ 1.3-2. At low redshifts the counts are dominated by spirals, and starbursts rise in number density to outnumber the spirals' contribution to the counts below 1 mJy.Comment: 10 pages, 8 figures, accepted 3 November 2007 for publication in The Astronomical Journal, formatted with emulateapj styl

    Complete Multiwavelength Characterization of Faint Chandra X-ray Sources Seen in the Spitzer Wide-Area IR Extragalactic (SWIRE) Survey

    Full text link
    We exploit deep combined observations with Spitzer and Chandra of the SWIRE survey in the ELAIS-N1 region, to investigate the nature of the faint X-ray and IR sources in common, to identify AGN/starburst diagnostics, and to study the sources of the X-ray and IR cosmic backgrounds. In the 17'x17' area of the Chandra ACIS-I image there are 3400 SWIRE near-IR sources with 4 sigma detections in at least 2 IRAC bands and 988 sources detected at 24micron with MIPS brighter than 0.1 mJy. Of these, 102 IRAC and 59 MIPS sources have Chandra counterparts, out of a total of 122 X-ray sources present in the area with S(0.5-8 kev)>10^(-15) erg/cm^2/s. We have constructed SEDs for each source using data from the 4 IRAC wavebands, Chandra fluxes, and optical follow-up data in the wavebands U, g', r', i', Z, and H. We fit a number of spectral templates to the SEDs at optical and infrared wavelengths to determine photometric redshifts and spectral categories, and also make use of diagnostics based on the X-ray luminosities, hardness ratios, X-ray to infrared spectral slopes and optical morphologies. Although we have spectroscopic redshifts for only a minority of the Chandra sources, the available SEDs constrain the redshifts for most of the sample sources, which turn out to be typically at 0.5<z<2. We find that 39% of the Chandra sources are dominated by type-1 AGN emission, 23% display optical/IR spectra typical of type-2 AGNs, while the remaining 38% fraction show starburst-like or even normal galaxy spectra. Since we prove that all these galaxies are dominated by AGN emission in X-rays this brings the fraction of type-1 AGNs to be 80% of the type-2: even assuming that all the Chandra sources undetected by Spitzer are type-2 AGNs, the type-1 fraction would exceed 1/3 of the total population (abridged).Comment: Accepted for publication in AJ, March 2005 issu

    SWIRE: The SIRTF Wide‐Area Infrared Extragalactic Survey

    Get PDF
    The SIRTF Wide-Area Infrared Extragalactic Survey (SWIRE), the largest SIRTF Legacy program, is a wide-area imaging survey to trace the evolution of dusty, star-forming galaxies, evolved stellar populations, and active galactic nuclei (AGNs) as a function of environment, from redshifts to the current z ∌ 3 epoch. SWIRE will survey seven high-latitude fields, totaling 60–65 deg2 in all seven SIRTF bands: Infrared Array Camera (IRAC) 3.6, 4.5, 5.6, and 8 mm and Multiband Imaging Photometer for SIRTF (MIPS) 24, 70, and 160 mm. Extensive modeling suggests that the Legacy Extragalactic Catalog may contain in excess of 2 million IR-selected galaxies, dominated by (1) ∌150,000 luminous infrared galaxies (LIRGs; LFIR 1 1011 L,) detected by MIPS (and significantly more detected by IRAC), ∌7000 of these with ; (2) 1 million IRAC- z 1 2 detected early-type galaxies (∌ with and ∌10,000 with ); and (3) ∌20,000 classical AGNs 5 2 # 10 z 1 1 z 1 2 detected with MIPS, plus significantly more dust-obscured quasi-stellar objects/AGNs among the LIRGs. SWIRE will provide an unprecedented view of the evolution of galaxies, structure, and AGNs. The key scientific goals of SWIRE are (1) to determine the evolution of actively star forming and passively evolving galaxies in order to understand the history of galaxy formation in the context of cosmic structure formation; (2) to determine the evolution of the spatial distribution and clustering of evolved galaxies, starbursts, and AGNs in the key redshift range over which much of cosmic evolution has occurred; and (3) to 0.5 ! z ! 3 determine the evolutionary relationship between “normal galaxies” and AGNs and the contribution of AGN accretion energy versus stellar nucleosynthesis to the cosmic backgrounds. The large area of SWIRE is important to establish statistically significant population samples over enough volume cells that we can resolve the star formation history as a function of epoch and environment, i.e., in the context of structure formation. The large volume is also optimized for finding rare objects. The SWIRE fields are likely to become the next generation of large “cosmic windows” into the extragalactic sky. They have been uniquely selected to minimize Galactic cirrus emission over large scales. The Galaxy Evolution Explorer will observe them as part of its deep 100 deg2 survey, as will Herschel. SWIRE includes ∌9 deg2 of the unique large-area XMM Large Scale Structure hard X-ray imaging survey and is partly covered by the UKIDSS deep J and K survey. An extensive optical/near-IR imaging program is underway from the ground. The SWIRE data are nonproprietary; catalogs and images will be released twice yearly, beginning about 11 months after SIRTF launch. Details of the data products and release schedule are presented

    Reduction Algorithms for the Multiband Imaging Photometer for Spitzer

    Full text link
    We describe the data reduction algorithms for the Multiband Imaging Photometer for Spitzer (MIPS) instrument. These algorithms were based on extensive preflight testing and modeling of the Si:As (24 micron) and Ge:Ga (70 and 160 micron) arrays in MIPS and have been refined based on initial flight data. The behaviors we describe are typical of state-of-the-art infrared focal planes operated in the low backgrounds of space. The Ge arrays are bulk photoconductors and therefore show a variety of artifacts that must be removed to calibrate the data. The Si array, while better behaved than the Ge arrays, does show a handful of artifacts that also must be removed to calibrate the data. The data reduction to remove these effects is divided into three parts. The first part converts the non-destructively read data ramps into slopes while removing artifacts with time constants of the order of the exposure time. The second part calibrates the slope measurements while removing artifacts with time constants longer than the exposure time. The third part uses the redundancy inherit in the MIPS observing modes to improve the artifact removal iteratively. For each of these steps, we illustrate the relevant laboratory experiments or theoretical arguments along with the mathematical approaches taken to calibrate the data. Finally, we describe how these preflight algorithms have performed on actual flight data.Comment: 21 pages, 16 figures, PASP accepted (May 2005 issue), version of paper with full resolution images is available at http://dirty.as.arizona.edu/~kgordon/papers/PS_files/mips_dra.pd

    Optical follow-up of the neutron star-black hole mergers S200105ae and S200115j

    Get PDF
    LIGO and Virgo’s third observing run revealed the first neutron star–black hole (NSBH) merger candidates in gravitational waves. These events are predicted to synthesize r-process elements1,2 creating optical/near-infrared ‘kilonova’ emission. The joint gravitational wave and electromagnetic detection of an NSBH merger could be used to constrain the equation of state of dense nuclear matter3, and independently measure the local expansion rate of the Universe4. Here, we present the optical follow-up and analysis of two of the only three high-significance NSBH merger candidates detected to date, S200105ae and S200115j, with the Zwicky Transient Facility5. The Zwicky Transient Facility observed ~48% of S200105ae and ~22% of S200115j’s localization probabilities, with observations sensitive to kilonovae brighter than −17.5 mag fading at 0.5 mag d−1 in the g- and r-bands; extensive searches and systematic follow-up of candidates did not yield a viable counterpart. We present state-of-the-art kilonova models tailored to NSBH systems that place constraints on the ejecta properties of these NSBH mergers. We show that with observed depths of apparent magnitude ~22 mag, attainable in metre-class, wide-field-of-view survey instruments, strong constraints on ejecta mass are possible, with the potential to rule out low mass ratios, high black hole spins and large neutron star radii

    Kilonova Luminosity Function Constraints Based on Zwicky Transient Facility Searches for 13 Neutron Star Merger Triggers during O3

    Get PDF
    We present a systematic search for optical counterparts to 13 gravitational wave (GW) triggers involving at least one neutron star during LIGO/Virgo's third observing run (O3). We searched binary neutron star (BNS) and neutron star black hole (NSBH) merger localizations with the Zwicky Transient Facility (ZTF) and undertook follow-up with the Global Relay of Observatories Watching Transients Happen (GROWTH) collaboration. The GW triggers had a median localization area of 4480 degÂČ, a median distance of 267 Mpc, and false-alarm rates ranging from 1.5 to 10⁻ÂČ⁔ yr⁻Âč. The ZTF coverage in the g and r bands had a median enclosed probability of 39%, median depth of 20.8 mag, and median time lag between merger and the start of observations of 1.5 hr. The O3 follow-up by the GROWTH team comprised 340 UltraViolet/Optical/InfraRed (UVOIR) photometric points, 64 OIR spectra, and three radio images using 17 different telescopes. We find no promising kilonovae (radioactivity-powered counterparts), and we show how to convert the upper limits to constrain the underlying kilonova luminosity function. Initially, we assume that all GW triggers are bona fide astrophysical events regardless of false-alarm rate and that kilonovae accompanying BNS and NSBH mergers are drawn from a common population; later, we relax these assumptions. Assuming that all kilonovae are at least as luminous as the discovery magnitude of GW170817 (−16.1 mag), we calculate that our joint probability of detecting zero kilonovae is only 4.2%. If we assume that all kilonovae are brighter than −16.6 mag (the extrapolated peak magnitude of GW170817) and fade at a rate of 1 mag day⁻Âč (similar to GW170817), the joint probability of zero detections is 7%. If we separate the NSBH and BNS populations based on the online classifications, the joint probability of zero detections, assuming all kilonovae are brighter than −16.6 mag, is 9.7% for NSBH and 7.9% for BNS mergers. Moreover, no more than 10⁻⁎, or φ > 30° to be consistent with our limits. We look forward to searches in the fourth GW observing run; even 17 neutron star mergers with only 50% coverage to a depth of −16 mag would constrain the maximum fraction of bright kilonovae to <25%
    • 

    corecore