20 research outputs found

    A human immune dysregulation syndrome characterized by severe hyperinflammation with a homozygous nonsense Roquin-1 mutation

    Get PDF
    Hyperinflammatory syndromes are life-threatening disorders caused by overzealous immune cell activation and cytokine release, often resulting from defects in negative feedback mechanisms. In the quintessential hyperinflammatory syndrome familial hemophagocytic lymphohistiocytosis (HLH), inborn errors of cytotoxicity result in effector cell accumulation, immune dysregulation and, if untreated, tissue damage and death. Here, we describe a human case with a homozygous nonsense R688* RC3H1 mutation suffering from hyperinflammation, presenting as relapsing HLH. RC3H1 encodes Roquin-1, a posttranscriptional repressor of immune-regulatory proteins such as ICOS, OX40 and TNF. Comparing the R688* variant with the murine M199R variant reveals a phenotypic resemblance, both in immune cell activation, hypercytokinemia and disease development. Mechanistically, R688* Roquin-1 fails to localize to P-bodies and interact with the CCR4-NOT deadenylation complex, impeding mRNA decay and dysregulating cytokine production. The results from this unique case suggest that impaired Roquin-1 function provokes hyperinflammation by a failure to quench immune activation

    Cancer cells dying from ferroptosis impede dendritic cell-mediated anti-tumor immunity

    Get PDF
    Immunogenic cell death significantly contributes to the success of anti-cancer therapies, but immunogenicity of different cell death modalities widely varies. Ferroptosis, a form of cell death that is characterized by iron accumulation and lipid peroxidation, has not yet been fully evaluated from this perspective. Here we present an inducible model of ferroptosis, distinguishing three phases in the process-\u27initial\u27 associated with lipid peroxidation, \u27intermediate\u27 correlated with ATP release and \u27terminal\u27 recognized by HMGB1 release and loss of plasma membrane integrity-that serves as tool to study immune cell responses to ferroptotic cancer cells. Co-culturing ferroptotic cancer cells with dendritic cells (DC), reveals that \u27initial\u27 ferroptotic cells decrease maturation of DC, are poorly engulfed, and dampen antigen cross-presentation. DC loaded with ferroptotic, in contrast to necroptotic, cancer cells fail to protect against tumor growth. Adding ferroptotic cancer cells to immunogenic apoptotic cells dramatically reduces their prophylactic vaccination potential. Our study thus shows that ferroptosis negatively impacts antigen presenting cells and hence the adaptive immune response, which might hinder therapeutic applications of ferroptosis induction

    IRAP+ endosomes restrict TLR9 activation and signaling

    Get PDF
    International audienceThe retention of intracellular Toll-like receptors (TLRs) in the endoplasmic reticulum prevents their activation under basal conditions. TLR9 is activated by sensing ligands in specific endosomal-lysosomal compartments. Here we identified IRAP+ endosomes as major cellular compartments for the early steps of TLR9 activation in dendritic cells (DCs). Both TLR9 and its ligand, the dinucleotide CpG, were present as cargo in IRAP+ endosomes. In the absence of the aminopeptidase IRAP, the trafficking of CpG and TLR9 to lysosomes and signaling via TLR9 were enhanced in DCs and in mice following bacterial infection. IRAP stabilized CpG-containing endosomes by interacting with the actin-nucleation factor FHOD4, which slowed the trafficking of TLR9 toward lysosomes. Thus, endosomal retention of TLR9 via the interaction of IRAP with the actin cytoskeleton is a mechanism that prevents hyper-activation of TLR9 in DCs
    corecore