6 research outputs found

    The GAPS Programme with HARPS-N at TNG XIII. The orbital obliquity of three close-in massive planets hosted by dwarf K-type stars: WASP-43, HAT-P-20 and Qatar-2

    Get PDF
    Context. The orbital obliquity of planets with respect to the rotational axis of their host stars is a relevant parameter for the characterization of the global architecture of planetary systems and a key observational constraint to discriminate between different scenarios proposed to explain the existence of close-in giant planets. Aims. In the framework of the GAPS project, we conduct an observational programme aimed at determinating the orbital obliquity of known transiting exoplanets. The targets are selected to probe the obliquity against a wide range of stellar and planetary physical parameters. Methods. We exploit high-precision radial velocity (RV) measurements, delivered by the HARPS-N spectrograph at the 3.6 m Telescopio Nazionale Galileo, to measure the Rossiter-McLaughlin (RM) effect in RV time-series bracketing planet transits, and to refine the orbital parameters determinations with out-of-transit RV data. We also analyse new transit light curves obtained with several 1−2 m class telescopes to better constrain the physical fundamental parameters of the planets and parent stars. Results. We report here on new transit spectroscopic observations for three very massive close-in giant planets: WASP-43 b, HAT-P-20 b and Qatar-2 b (Mp = 2.00, 7.22, 2.62 MJ; a = 0.015, 0.036, 0.022 AU, respectively) orbiting dwarf K-type stars with effective temperature well below 5000 K (Teff = 4500 ± 100, 4595 ± 45, 4640 ± 65 K respectively). These are the coolest stars (except for WASP-80) for which the RM effect has been observed so far. We find λ = 3.5 ± 6.8 deg for WASP-43 b and λ = −8.0 ± 6.9 deg for HAT-P-20 b, while for Qatar-2, our faintest target, the RM effect is only marginally detected, though our best-fit value λ = 15 ± 20 deg is in agreement with a previous determination. In combination with stellar rotational periods derived photometrically, we estimate the true spin-orbit angle, finding that WASP-43 b is aligned while the orbit of HAT-P-20 b presents a small but significant obliquity (Ψ = 36-12+10 deg). By analyzing the CaII H&K chromospheric emission lines for HAT-P-20 and WASP-43, we find evidence for an enhanced level of stellar activity that is possibly induced by star-planet interactions

    Gliese 49: activity evolution and detection of a super-Earth A HADES and CARMENES collaboration

    Get PDF
    Small planets around low-mass stars often show orbital periods in a range that corresponds to the temperate zones of their host stars which are therefore of prime interest for planet searches. Surface phenomena such as spots and faculae create periodic signals in radial velocities and in observational activity tracers in the same range, so they can mimic or hide true planetary signals. We aim to detect Doppler signals corresponding to planetary companions, determine their most probable orbital configurations, and understand the stellar activity and its impact on different datasets. We analyze 22 years of data of the M1.5V-type star Gl49 (BD+61 195) including HARPS-N and CARMENES spectrographs, complemented by APT2 and SNO photometry. Activity indices are calculated from the observed spectra, and all datasets are analyzed with periodograms and noise models. We investigate how the variation of stellar activity imprints on our datasets. We further test the origin of the signals and investigate phase shifts between the different sets. To search for the best-fit model we maximize the likelihood function in a Markov Chain Monte Carlo approach. As a result of this study, we are able to detect the super-Earth Gl49b with a minimum mass of 5.6 Ms. It orbits its host star with a period of 13.85d at a semi-major axis of 0.090 au and we calculate an equilibrium temperature of 350 K and a transit probability of 2.0%. The contribution from the spot-dominated host star to the different datasets is complex, and includes signals from the stellar rotation at 18.86d, evolutionary time-scales of activity phenomena at 40-80d, and a long-term variation of at least four years

    Signaling pathways leading to ischemic mitochondrial neuroprotection

    No full text
    There is extensive evidence that ischemic/reperfusion mediated mitochondrial dysfunction is a major contributor to ischemic damage. However data also indicates that mild ischemic stress induces mitochondrial dependent activation of ischemic preconditioning. Ischemic preconditioning is a neuroprotective mechanism which is activated upon a brief sub-injurious ischemic exposure and is sufficient to provide protection against a subsequent lethal ischemic insult. Current research demonstrates that mitochondria are not only the inducers of but are also an important target of ischemic preconditioning mediated protection. Numerous proteins and signaling pathways are activated by ischemic preconditioning which protect the mitochondria against ischemic damage. In this review we examine some of the proteins activated by ischemic precondition which counteracts the deleterious effects of ischemia/reperfusion thereby maintaining normal mitochondrial activity and lead to ischemic tolerance

    Androgen Receptor Signaling Interactions Control Epithelial–Mesenchymal Transition (EMT) in Prostate Cancer Progression

    No full text
    corecore