95 research outputs found

    Enhancement of Both Long-Term Depression Induction and Optokinetic Response Adaptation in Mice Lacking Delphilin

    Get PDF
    In the cerebellum, Delphilin is expressed selectively in Purkinje cells (PCs) and is localized exclusively at parallel fiber (PF) synapses, where it interacts with glutamate receptor (GluR) δ2 that is essential for long-term depression (LTD), motor learning and cerebellar wiring. Delphilin ablation exerted little effect on the synaptic localization of GluRδ2. There were no detectable abnormalities in cerebellar histology, PC cytology and PC synapse formation in contrast to GluRδ2 mutant mice. However, LTD induction was facilitated at PF-PC synapses in Delphilin mutant mice. Intracellular Ca2+ required for the induction of LTD appeared to be reduced in the mutant mice, while Ca2+ influx through voltage-gated Ca2+ channels and metabotropic GluR1-mediated slow synaptic response were similar between wild-type and mutant mice. We further showed that the gain-increase adaptation of the optokinetic response (OKR) was enhanced in the mutant mice. These findings are compatible with the idea that LTD induction at PF-PC synapses is a crucial rate-limiting step in OKR gain-increase adaptation, a simple form of motor learning. As exemplified in this study, enhancing synaptic plasticity at a specific synaptic site of a neural network is a useful approach to understanding the roles of multiple plasticity mechanisms at various cerebellar synapses in motor control and learning

    A type of familial cleft of the soft palate maps to 2p24.2–p24.1 or 2p21–p12

    Get PDF
    Cleft of the soft palate (CSP) and the hard palate are subtypes of cleft palate. Patients with either condition often have difficulty with speech and swallowing. Nonsyndromic, cleft palate isolated has been reported to be associated with several genes, but to our knowledge, there have been no detailed genetic investigations of CSP. We performed a genome-wide linkage analysis using a single-nucleotide polymorphism-based microarray platform and successively using microsatellite markers in a family in which six members, across three successive generations, had CSP. A maximum LOD score of 2.408 was obtained at 2p24.2-24.1 and 2p21-p12, assuming autosomal dominant inheritance. Our results suggest that either of these regions is responsible for this type of CSP

    Protective Role of HLA-DRB1*13:02 against Microscopic Polyangiitis and MPO-ANCA-Positive Vasculitides in a Japanese Population: A Case-Control Study

    Get PDF
    Among antineutrophil cytoplasmic antibody (ANCA)-associated vasculitides (AAV), granulomatosis with polyangiitis (GPA) and proteinase 3-ANCA-positive AAV (PR3-AAV) are prevalent in European populations, while microscopic polyangiitis (MPA) and myeloperoxidase-ANCA-positive AAV (MPO-AAV) are predominant in the Japanese. We previously demonstrated association of DRB1*09:01-DQB1*03:03 haplotype, a haplotype common in East Asians but rare in the European populations, with MPA/MPO-AAV, suggesting that a population difference in HLA-class II plays a role in the epidemiology of this disease. To gain further insights, we increased the sample size and performed an extended association study of DRB1 and DPB1 with AAV subsets in 468 Japanese patients with AAV classified according to the European Medicines Agency algorithm (MPA: 285, GPA: 92, eosinophilic GPA [EGPA]: 56, unclassifiable: 35) and 596 healthy controls. Among these patients, 377 were positive for MPO-ANCA and 62 for PR3-ANCA. The significance level was set at α = 3.3x10-4 by applying Bonferroni correction. The association of DRB1*09:01 with MPO-AAV was confirmed (allele model, P = 2.1x10-4, odds ratio [OR] = 1.57). Protective association of DRB1*13:02 was detected against MPO-AAV (allele model, P = 2.3x10-5, OR = 0.42) and MPA (dominant model, P = 2.7x10-4, OR = 0.43). A trend toward increased frequency of DPB1*04:01, the risk allele for GPA in European populations, was observed among Japanese patients with PR3-AAV when conditioned on DRB1*13:02 (Padjusted = 0.0021, ORadjusted = 3.48). In contrast, the frequency of DPB1*04:01 was decreased among Japanese patients with MPO-AAV, and this effect lost significance when conditioned on DRB1*13:02 (Padjusted = 0.16), suggesting that DRB1*13:02 or other allele(s) in linkage disequilibrium may be responsible for the protection. The differential association of DPB1*04:01 with PR3-AAV and MPO-AAV and difference in DPB1*04:01 allele frequencies between populations supported the hypothesis that the HLA-class II population difference may account in part for these epidemiologic characteristics. Furthermore, taken together with our previous observations, the haplotype carrying DRB1*13:02 was suggested to be a shared protective factor against multiple autoimmune diseases

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target
    corecore