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Abstract

Background: Abatacept (ABA) is a biological disease-modifying antirheumatic drug (bDMARD) for rheumatoid
arthritis (RA). The aim of this study was to identify molecules that are associated with therapeutic responses to ABA
in patients with RA.

Methods: Peripheral blood was collected using a PAX gene Blood RNA kit from 45 bDMARD-naïve patients with RA
at baseline and at 6 months after the initiation of ABA treatment. Gene expression levels of responders (n = 27) and
non-responders (n = 8) to ABA treatment among patients with RA at baseline were compared using a microarray.
The gene expression levels were confirmed using real-time quantitative polymerase chain reaction (RT-qPCR).

Results: Gene expression analysis revealed that the expression levels of 218 genes were significantly higher and
those of 392 genes were significantly lower in the responders compared to the non-responders. Gene ontology
analysis of the 218 genes identified “response to type I interferon (IFN)” with 24 type I IFN-related genes. RT-qPCR
confirmed that there was a strong correlation between the score calculated using the 24 genes and that using
OAS3, MX1, and IFIT3 (type I IFN score) (rho with the type I IFN score 0.981); the type I IFN score was significantly
decreased after treatment with ABA in the responders (p < 0.05), but not in the non-responders. The receiver
operating characteristic curve analysis of the type I IFN score showed that sensitivity, specificity, and AUC (95%
confidence interval) for the responders were 0.82, 1.00, and 0.92 (0.82–1.00), respectively. Further, RT-qPCR
demonstrated higher expression levels of BATF2, LAMP3, CD83, CLEC4A, IDO1, IRF7, STAT1, STAT2, and TNFSF10 in the
responders, all of which are dendritic cell-related genes or type I IFN-related genes with significant biological
implications.

Conclusion: Type I IFN score and expression levels of the nine genes may serve as novel biomarkers associated
with a clinical response to ABA in patients with RA.
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Background
Rheumatoid arthritis (RA) is characterized by chronic in-
flammatory polyarthritis, which leads to the destruction of
the joints causing pain and disability [1]. Cytotoxic T
lymphocyte-associated antigen 4 immunoglobulin fusion
protein (CTLA4-Ig, abatacept (ABA)) is a biological
disease-modifying antirheumatic drug (bDMARD) for RA.
T cells are activated by the interaction of HLA class II
molecules on antigen-presenting cells (APCs) with a T cell
receptor (TCR) on the surface of T cells in the presence of
CD80/86 on APCs and CD28 on T cells. CTLA4-Ig in-
hibits the activation of T cells by selectively modulating
the CD80/86–CD28 interaction [2]. Abatacept is as effica-
cious as other bDMARDs in terms of clinical, structural,
and functional outcomes [3]. In a recent meta-analysis, it
was found that the risk of serious infections in humans
was lower for treatments using ABA than that using other
bDMARDs [4]. The prediction of therapeutic responses to
ABA could considerably help identify patients that can
benefit from the treatment.
Whole blood transcriptomic profiling using microarrays

has been widely used to investigate the action mechanisms
and identifying appropriate biomarkers predicting the effi-
cacy or safety of various drugs or treatment. Microarrays
have been applied to some bDMARDs including ABA [5–
9] to realize precision medicine for RA. Although some
promising data have been reported, endeavor to develop
novel biomarkers is still required. Here, we report the re-
sults of our study to identify molecules associated with
therapeutic responses of ABA for patients with RA using a
microarray.

Methods
Patients
A total of 168 RA patients who fulfilled the 2010 American
College of Rheumatology/European League Against
Rheumatism classification criteria for RA [10] and who re-
ceived ABA for the first time were enrolled in this multi-
center, prospective cohort study from Keio University, Sai-
tama Medical University and Tokyo Medical and Dental
University from June 2010 to December 2012 [11]. Blood
samples for the microarray and RT-PCR were collected
from 129 of the 168 patients. Forty-five of the 129 patients
were bDMARD-naïve, and they were enrolled in this study.
All patients had active RA despite the use of conventional
synthetic disease-modifying antirheumatic drug (DMARD)
for at least 3 months. Treatment efficacy was evaluated
using the European League Against Rheumatism (EULAR)
response criteria [12]. Patients were observed for 6 months
after the initiation of ABA treatment. This study was regis-
tered at the University Hospital Medical Information Net-
work Clinical Trials Registry (UMIN000005144). This
study was approved by the Ethics Committee of the Tokyo
Medical and Dental University Hospital (#836 and

#M2015-553-01) and the other participating institutions.
All subjects provided written informed consent.

RNA extraction
Blood from the patients was collected in PAXgene Blood
RNA tubes (PreAnalytiX) at baseline and at 6 months after
the initiation of ABA treatment. Total RNAs were ex-
tracted using PAXgene Blood RNA Kits (PreAnalytiX) fol-
lowing the manufacturer’s instructions. The total RNA
quantity and quality were determined using a NanoDrop-
1000 spectrophotometer (Thermo Fisher Scientific) and
an Agilent 2100 Bioanalyzer (Agilent Technologies).

Microarray experiment
Cy3-labeled complementary RNAs (cRNAs) were synthe-
sized using Quick Amp Labeling Kits (Agilent). The
cRNAs were hybridized at 65 °C for 17 h to Whole Human
Genome 44 K Microarrays (Agilent, Design ID: 014850).
After washing, the microarrays were scanned using an
Agilent DNA microarray scanner (Agilent). The intensity
values of each scanned feature were quantified using Agi-
lent Feature Extraction Software (Agilent).

Microarray data analysis
Signal intensity was adjusted using quantile normalization
plus ComBat to reduce the batch effect [13, 14]. After ex-
cluding poorly annotated probes and low signal probes
(average signal < 100), 10,420 probes were extracted for
further statistical analysis. We implemented a functional
genomic analysis using the PANTHER Overrepresentation
Test. The reference list included all Homo sapiens genes,
and the annotation dataset was obtained from the GO
Ontology database (released November 30, 2016).

Real-time quantitative polymerase chain reaction analysis
Real-time qPCR (RT-qPCR) analysis was performed using
a Custom RT2 Profiler PCR Array (QIAGEN) and RT2
qPCR Primer Assays (QIAGEN) according to the manu-
facturer’s instructions. cDNA was generated using 400 ng
of total RNA. Real-time PCR was performed with a Roche
Lightcycler 480 (Roche Diagnostics) using 4 ng cDNA per
reaction. The thermal profile was as follows: denaturation
(95 °C, 1min) and amplification (45 cycles; 95 °C, 15 s;
60 °C, 1min). The second derivative maximum method
was used to determine the crossing point (Cp) values. The
relative expression of the targeting gene was normalized
to 18S rRNA (QIAGEN).

Statistical analysis
The primary objective of this study was to identify novel
molecules associated with therapeutic responses to ABA
for patients with RA, and the secondary objective was val-
idation of the results of the previous study [9]. Fisher’s
exact test and Student’s t test were used to compare the
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categorical and continuous variables between two groups,
respectively. The differences in gene expression at baseline
obtained using the microarray and RT-qPCR were ana-
lyzed using the Welch’s t tests; p < 0.05 was considered
statistically significant. The type I IFN score was calcu-
lated using the Z-score methods [15]. Correlation between
the IFN signature with 24 genes and that with a smaller
number of genes was analyzed by Spearman’s correlation
test. The optimal cut-off value for discriminating the re-
sponders and non-responders to ABA treatment were de-
termined by receiver operating characteristic curve (ROC)
analysis.

Results
Clinical characteristics of the patients at baseline
Of the 45 bDMARD-naïve patients with RA from whom
blood sample for microarray research was obtained, 27
were classified as good responders (described as re-
sponders hereafter, 60.0%); 10, as moderate responders
(22.2%); and 8, as non-responders (17.8%) using EULAR
response criteria [12]. In order to extract response-
associated molecules efficiently, we compared baseline
data of the responders and non-responders (Table 1).
There was no significant difference in age, sex, preva-
lence of rheumatoid factor and anti-cyclic citrullinated
peptide (CCP) antibody, disease activity, and the use of
prednisolone (PSL) between the two groups. For the re-
sponder group, the disease duration tended to be longer
and methotrexate (MTX) was used more frequently.

Genes associated with clinical response to ABA treatment
To identify novel biomarkers associated with clinical re-
sponses to ABA treatment, we compared gene expression

levels at baseline between the responders and the non-
responders. The expression levels of 218 genes in the re-
sponders was significantly higher than that of the non-
responders, and the expression levels of 392 genes in the
responders was significantly lower than that of the non-
responders (p < 0.05, false discovery rate (FDR) < 0.333
and fold change > 1.3) (Supplementary data 1). Gene
ontology (GO) analysis of the 218 genes identified “re-
sponse to type I interferon (IFN) (GO:0034340)” with 24
type I IFN-related genes: BST2, GBP2, IFI27, IFI35, IFI6,
IFIT1, IFIT2, IFIT3, IFITM1, IFITM3, IRF7, ISG15, ISG20,
MX1, MX2, OAS1, OAS2, OAS3, OASL, RSAD2, STAT1,
STAT2, TRIM56, and XAF1 [16]. Twelve out of the 24
type I IFN-related genes were elevated (p < 0.05 without
conditions of FDR or fold changes) in the responders
compared to the moderate responders plus non-
responders (n = 18) (Supplementary Table 1 and Supple-
mentary data 2) and the GO analysis again identified “re-
sponse to type I interferon (IFN).” The GO analysis of the
392 genes downregulated in the responders did not iden-
tify a specific group of genes. The previously reported
genes associated with therapeutic response to ABA, which
were elongation arrest and recovery-related genes and
CD56-specifically expressed genes [9], were not included
in the over- or under-expressed genes.

Type I IFN score and treatment response to ABA
To evaluate the association of the type I IFN signature
and treatment response to ABA, we calculated the type I
IFN score using the average values of the Z-scored 24
type I IFN genes, as reported by Kennedy et al. [15]. The
type I IFN score of the responders was significantly
higher than the non-responders (p < 0.005, Fig. 1). In

Table 1 Clinical characteristics of responders and non-responders at baseline

Responders Non-responders p value

Number of patients 27 8

Age, year 59.4 ± 13.1 67.4 ± 12.5 N.S.

Female, n (%) 22 (81.5) 5 (62.5) N.S.

Disease duration, month 109.2 ± 147.9 50.25 ± 56.7 N.S.

RF titer, mg/dl 69.7 ± 78.3(n = 26) 83.5 ± 74.3 N.S.

RF positivity, n (%) 20 (76.9) 8 (100) N.S.

Anti-CCP antibody titer, U/ml 92.8 ± 94.0(n = 25) 120.7 ± 117 N.S.

Anti-CCP antibody positivity, n (%) 25 (91.6) 8 (100) N.S.

DAS28-CRP 4.37 ± 1.04 3.81 ± 0.98 N.S.

Use of PSL, n (%) 5 (18.5) 3 (37.5) N.S.

PSL dose, mg/day 6.4 ± 5.0 10.25 ± 7.2 N.S.

Use of MTX, n (%) 19 (70.0) 2 (25.0) 0.04

MTX dose, mg/week 10.61 ± 3.7 9.0 ± 4.2 N.S.

Values are expressed as the mean ± SD. Fisher’s exact test and Student’s t test were used to compare categorical and continuous variables between the two
groups, respectively. p < 0.05 was considered statistically significant
N.S. not significant, RF rheumatoid factor, CCP cyclic citrullinated peptide, DAS28-CRP disease activity score in 28 joints using C-reactive protein, PSL prednisolone,
MTX methotrexate
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order to reproduce the type I IFN score with fewer
genes, we compared the type I IFN score calculated
using the 24 genes and the scores created by a combin-
ation of some of the genes (Supplementary Fig. 1A). We
found that there was a strong correlation between the
scores calculated by the 24 genes and the score created
using genes of OAS3, MX1, and IFIT3 (rho with the type
I IFN score 0.981) (designated as type I IFN score here-
after) (Supplementary Fig. 1B).
To confirm the expression levels of genes using the

microarray analysis and their association with the treat-
ment response to ABA, we performed RT-qPCR; we
quantified the expression levels of OAS3, MX1, and
IFIT3 to calculate the type I IFN score using the same
RNA samples used for microarray analysis. The type I
IFN score using RT-qPCR of the responders was signifi-
cantly higher than that of the non-responders (p <
0.0005, Fig. 2). We also compared the type I IFN score
at baseline and at 24 weeks after the initiation of ABA
treatment. The type I IFN score using RT-qPCR signifi-
cantly decreased, albeit only a 15% reduction, after treat-
ment with ABA in the responders (p < 0.05, Fig. 2);
however, this was not observed for the non-responders.
The ROC analysis revealed an optima cutoff value of the

relative expression levels as − 0.565. Sensitivity, specificity,
and AUC (95% confidence interval) were 0.82, 1.00, and
0.92 (0.82–1.00), respectively (Supplementary Fig. 2).

Other treatment response-associated molecules
confirmed by RT-qPCR
Since type I IFN is primarily produced by plasmacytoid
dendritic cells (pDC), we selected dendritic cell-related
genes or type I IFN-related genes with significant bio-
logical implications for quantification using RT-qPCR
among the 218 genes as follows: BATF2, LAMP3, and

CD83 are related to dendritic cell activation and matur-
ation [17–19]; TNFSF10, BTLA, and IDO1 are expressed
on dendritic cells (DCs) [20–24]. CLEC4A has a role in
the production of type I IFN from pDC [25], and
STAT1, STAT2, and IRF7 have roles in the signal of type
I IFN production [26–28]. The expression levels of these
10 genes measured by qRT-PCR in the responders were
significantly higher compared to those of the non-
responders except for BTLA (Fig. 3). We compared gene
expression levels among patients with different disease
activities at baseline and 24 weeks after the initiation of
ABA treatment, and it found that all genes had no asso-
ciation with the disease activities at both time points
(data not shown).
We compared the expression levels of these 10 genes

before and after treatment with ABA using RT-qPCR.
The expressions of LAMP3 and STAT1 were signifi-
cantly decreased after treatment with ABA; however, the
percentage of reduction was relatively small (LAMP
41.7% and STAT1 17.4%, Fig. 3b, g).

Discussion
In this study, we demonstrated that the type I IFN score
and the expression levels of BATF2, LAMP3, CD83,
CLEC4A, IDO1, IRF7, STAT1, STAT2, and TNFSF10 are
associated with a good clinical response to ABA in pa-
tients with RA.
The family of type I IFNs, which consist of IFN-alpha

and IFN-beta, has an important role in regulating immune
response [28] [29]. The high expression of the type I IFN
signature was found in 22 to 65% of the patients with RA
[27, 30] but was not associated with disease activity [31]. It

Fig. 1 Comparison of type I IFN scores between responders and
non-responders. Type I IFN score was calculated using the average
values of the Z-scored 24 type I IFN genes, as reported by Kennedy
et al. [15]. Responders to abatacept showed higher type I IFN score
than non-responders (p < 0.005, the Mann-Whitney’s U test)

Fig. 2 Type I IFN score using RT-qPCR at baseline and 24 weeks after
the initiation of abatacept treatment. The expression levels of OAS3,
MX1, and IFIT3 were determined by using RT-qPCR to calculate the
type I IFN score for the same RNA samples of microarray analysis
(Fig. 2). p < 0.05 was considered statistically significant. *p < 0.05,
**p < 0.01, ***p < 0.001. R, responders; N, non-responders; N.S.
not significant
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has been reported that the type I IFN signature is highly
expressed in the pre-clinical phase of RA with increased
levels of anti-CCP antibody and rheumatoid factor [32,
33]. In addition, IFN-administered patients often develop
arthritis as an adverse drug reaction [34–36], which

indicates that the increased levels of type I IFN, triggered
by a viral infection or other immunological stimuli, may
be involved in the pathogenesis of pre-clinical or early RA.
It is reported that arthritis was mitigated in interferon
alpha/beta receptor alpha chain-deficient mice and

Fig. 3 Comparison of mRNA expression levels of the selected genes at baseline between the responders and the non-responders. Expression
levels of BATF2, LAMP3, CD83, TNFSF10, BTLA, CLEC4A, IDO1, STAT1, STAT2, and IRF7 were determined using RT-qPCR and compared between the
responders and the non-responders (a–j). p < 0.05 was considered statistically significant. *p < 0.05, **p < 0.01, ***p < 0.001. R, responders; N, non-
responders, N.S., not significant
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interferon regulatory factor-1-deficient mice [37, 38].
These reports together with our data may indicate that
ABA shows its clinical efficacy through the reduction of
the type I IFN activity in patients with RA.
The expression levels of genes related to the activation

of dendritic cells, BATF2, LAMP3, and CD83, showed sig-
nificant differences between responders and non-
responders at baseline. LAMP3 was one of the differen-
tially expressed genes between RA and osteoarthritis pa-
tients [39], and CD83 was expressed in more than 20% of
pDCs in the RA synovium [40]. In addition, early-stage
RA patients had elevated levels of soluble CD83 in plasma
[41]. Since CD83 is expressed as a membrane-bound form
on mature dendritic cells and as a soluble form in plasma,
further studies are warranted to evaluate the predictive
ability of CD83 mRNA or proteins for responses to ABA
treatment or to other treatments in patients with RA.
Comparing the background at the start of ABA treat-

ment, the percentage of MTX users was different in re-
sponders and non-responders. Recently, it has been
reported that the expression level of the type 1 IFN is
higher in patients that do not respond to methotrexate
[42]. As there was no difference in the type I IFN scores
among MTX users and non-users in both responders
and non-responders in this study (data not shown), the
cause of the difference in type I IFN expressions be-
tween the responders and the non-responders is not at-
tributed to the percentage of MTX use.
This study has some limitations. First is the small sample

size. The association of IFN signature with therapeutic re-
sponse to ABA identified between responders (n = 27) and
non-responders (n = 8) was supported by the comparison
between the responders vs moderate- plus no-responders
(n = 18). Second, we did not have validation cohort, and the
risk of over-fitting of models should be considered. Our re-
sults need to be confirmed in a future study. Third, we
could not validate the results of the previous study, in
which the signature scores of elongation arrest and
recovery-related genes, and CD56-specifically expressed
genes were significantly elevated in non-responders [9].
The characteristics of the patient population analyzed and
the definition of therapeutic response applied may account
for the difference between the studies.

Conclusion
Type I IFN score and expression levels of the nine
genes—BATF2, LAMP3, CD83, TNFSF10, CLEC4A, IDO1,
STAT1, STAT2, and IRF7—may serve as biomarkers for
predicting the clinical responses to ABA treatment in pa-
tients with RA.
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