124 research outputs found

    Real-time Trading System based on Selections of Potentially Profitable, Uncorrelated, and Balanced Stocks by NP-hard Combinatorial Optimization

    Full text link
    Financial portfolio construction problems are often formulated as quadratic and discrete (combinatorial) optimization that belong to the nondeterministic polynomial time (NP)-hard class in computational complexity theory. Ising machines are hardware devices that work in quantum-mechanical/quantum-inspired principles for quickly solving NP-hard optimization problems, which potentially enable making trading decisions based on NP-hard optimization in the time constraints for high-speed trading strategies. Here we report a real-time stock trading system that determines long(buying)/short(selling) positions through NP-hard portfolio optimization for improving the Sharpe ratio using an embedded Ising machine based on a quantum-inspired algorithm called simulated bifurcation. The Ising machine selects a balanced (delta-neutral) group of stocks from an NN-stock universe according to an objective function involving maximizing instantaneous expected returns defined as deviations from volume-weighted average prices and minimizing the summation of statistical correlation factors (for diversification). It has been demonstrated in the Tokyo Stock Exchange that the trading strategy based on NP-hard portfolio optimization for NN=128 is executable with the FPGA (field-programmable gate array)-based trading system with a response latency of 164 μ\mus.Comment: 12 pages, 5 figures. arXiv admin note: text overlap with arXiv:2307.0592

    Live E! Project: Establishment of Infrastructure Sharing Environmental Information

    Full text link
    The Live E! project is an open research consortium among industry and academia to explore the platform to share the digital information related with the earth and our living environment. We have getting a lot of low cost sensor nodes with Internet connectivity. The deployment of broad-band and ubiquitous networks will enable autonomous and global digital information sharing over the globe. In this paper, we describe the technical and operational overview of Live E! project, while discussing the objective, such as education, disaster protection/reduction/recovery or busi-ness cases, and goal of this project activity. 1

    Functional and histopathologic correlation in patients with dilated cardiomyopathy: An integrated evaluation by multivariate analysis

    Get PDF
    To correlate left ventricular function and histologic features in patients with dilated cardiomyopathy, precise indexes of hemodynamics and semiquantitative histologic data were combined for multivariate analysis. Right endomyocardial biopsy was performed at the time of cardiac catheterization. Five hemodynamic indexes were used for functional assessment: 1) ejection fraction, 2) ratio of end-systolic stress to volume index, 3) end-dia-stolic stress, 4) time constant (T) of left ventricular pressure fall, and 5) end-systolic stress. Six histologic findings (disarray of myofibers, hypertrophy of myofibers, scarcity of myofibrils, nuclear changes of myofibers, vacuolization of myofibers and proliferation of collagen fibers) were graded from (−) to (4 + ). Each finding was assigned to category ( − ) or ( + ) according to the absence or presence of significant abnormality.Ordinary statistical analysis revealed that, although ejection fraction was lower in category ( + ) for proliferation of collagen fibers, ratio of end-systolic to volume index was reduced for category ( + ) of hypertrophy of myofibers. A significant correlation was present between hypertrophy of myofibers and proliferation of collagen fibers by Spearman rank correlation. When principal component analysis was applied to the hemodynamic data, two principal components could be extracted. Fisher's discriminant analysis could clearly differentiate two categories ( − ) and ( + ) in the semiquantitative histologic finding of proliferation of collagen fibers. The analysis indicated that contractility was reduced with elevated afterload in that category ( + ). Thus, proliferation of collagen fibers may play a pivotal role in deteriorating contractility in patients with dilated cardiomyopathy

    Hydrotalcite-Supported Ag/Pd Bimetallic Nanoclusters Catalyzed Oxidation and One-Pot Aldol Reaction in Water

    Get PDF
    A highly active hydrotalcite-supported Ag/Pd bimetallic nanocluster catalyst has been developed by a simple, easy and safe chemical reduction method. The catalyst was characterized by high-resolution transmission electron microscopy (HR-TEM), which revealed very small (3.2 ± 0.7 nm) nanoclusters with a narrow size distribution. The bimetallic Ag/Pd catalyst showed strong cooperation between Ag and Pd for the alcohol oxidation reaction. The developed catalyst provided an efficient and environmentally friendly method for alcohol oxidation and one-pot cross-aldol condensation in water. A broad scope of α,β-unsaturated ketones with good to excellent yields were obtained under very mild conditions. This catalytic system offers an easy preparation method with a simple recovery process, good activity and reusability of up to five cycles without significant loss in the catalytic activity

    Fast and effective mitochondrial delivery of omega-Rhodamine-B-polysulfobetaine-PEG copolymers

    Get PDF
    Mitochondrial targeting and entry, two crucial steps in fighting severe diseases resulting from mitochondria dysfunction, pose important challenges in current nanomedicine. Cell-penetrating peptides or targeting groups, such as Rhodamine-B (Rho), are known to localize in mitochondria, but little is known on how to enhance their effectiveness through structural properties of polymeric carriers. To address this issue, we prepared 8 copolymers of 3-dimethyl(methacryloyloxyethyl) ammonium propane sulfonate and poly(ethyleneglycol) methacrylate, p(DMAPS-ran-PEGMA) (molecular weight, 18.0 <M-n <74.0 kg/mol) with two different endgroups. We labeled them with Rho groups attached along the chain or on one of the two endgroups (alpha or omega). From studies by flow cytometry and confocal fluorescence microscopy of the copolymers internalization in HeLa cells in the absence and presence of pharmacological inhibitors, we established that the polymers cross the cell membrane foremost by translocation and also by endocytosis, primarily clathrin-dependent endocytosis. The most effective mitochondrial entry was achieved by copolymers of M-n <30.0 kg/mol, lightly grafted with PEG chains (<5 mol %) labeled with Rho in the omega-position. Our findings may be generalized to the uptake and mitochondrial targeting of prodrugs and imaging agents with a similar polymeric scaffold.Peer reviewe

    Bilateral Upper Arm Granulomas Induced by Leuprorelin Acetate Injection Mimicking Malignant Soft Tissue Tumors: A Case Report

    Get PDF
    Leuprorelin acetate is a common anticancer medication used for prostate cancer treatment. One of the local adverse reactions after leuprorelin injection is the development of reactive granulomas, typically presenting as subcutaneous nodules. In this case report, we describe a 73-year-old patient with prostate cancer who developed unusually large sized intramuscular reactive granulomas, which mimicked malignant soft tissue tumors. The patient, who had been receiving leuprorelin acetate treatment for the past 12 months, noticed painful masses in both upper arms. Based on the findings of magnetic resonance imaging and fluorodeoxyglucose-positron emission tomography/computed tomography, a diagnosis of malignant soft tissue tumor was strongly suggested. However, further investigation through needle biopsy ultimately led us to the final diagnosis of reactive granuloma. The masses spontaneously resolved after discontinuation of leuprorelin injection. While reactive granulomas after leuprorelin injections are not rare, intramuscular cases are relatively uncommon. Despite using imaging studies as a rational initial approach in the diagnostic process, as we did in our case, their results turned out to be indistinguishable from those of malignant soft tissue tumors, thus highlighting the importance of pathological examination in confirming diagnosis, especially when a patient presents with atypical clinical manifestations

    The novel heart-specific RING finger protein 207 is involved in energy metabolism in cardiomyocytes

    Get PDF
    A failing heart shows severe energy insufficiency, and it is presumed that this energy shortage plays a critical role in the development of cardiac dysfunction. However, little is known about the mechanisms that cause energy metabolic alterations in the failing heart. Here, we show that the novel RING-finger protein 207 (RNF207), which is specifically expressed in the heart, plays a role in cardiac energy metabolism. Depletion of RNF207 in neonatal rat cardiomyocytes (NRCs) leads to a reduced cellular concentration of adenosine triphosphate (ATP) and mitochondrial dysfunction. Consistent with this result, we observed here that the expression of RNF207 was significantly reduced in mice with common cardiac diseases including heart failure. Intriguingly, proteomic approaches revealed that RNF207 interacts with the voltage-dependent anion channel (VDAC), which is considered to be a key regulator of mitochondria function, as an RNF207-interacting protein. Our findings indicate that RNF207 is involved in ATP production by cardiomyocytes, suggesting that RNF207 plays an important role in the development of heart failure

    CA9 and PRELID2; hypoxia-responsive potential therapeutic targets for pancreatic ductal adenocarcinoma as per bioinformatics analyses

    Get PDF
    A strong hypoxic environment has been observed in pancreatic ductal adenocarcinoma (PDAC) cells, which contributes to drug resistance, tumor progression, and metastasis. Therefore, we performed bioinformatics analyses to investigate potential targets for the treatment of PDAC. To identify potential genes as effective PDAC treatment targets, we selected all genes whose expression level was related to worse overall survival (OS) in The Cancer Genome Atlas (TCGA) database and selected only the genes that matched with the genes upregulated due to hypoxia in pancreatic cancer cells in the dataset obtained from the Gene Expression Omnibus (GEO) database. Although the extracted 107 hypoxia-responsive genes included the genes that were slightly enriched in angiogenic factors, TCGA data analysis revealed that the expression level of endothelial cell (EC) markers did not affect OS. Finally, we selected CA9 and PRELID2 as potential targets for PDAC treatment and elucidated that a CA9 inhibitor, U-104, suppressed pancreatic cancer cell growth more effectively than 5-fluorouracil (5-FU) and PRELID2 siRNA treatment suppressed the cell growth stronger than CA9 siRNA treatment. Thus, we elucidated that specific inhibition of PRELID2 as well as CA9, extracted via exhaustive bioinformatic analyses of clinical datasets, could be a more effective strategy for PDAC treatment
    corecore