93 research outputs found
Food Antioxidants and Aging: Theory, Current Evidence and Perspectives
The concept of food and aging is of great concern to humans. So far, more than 300 theories of aging have been suggested, and approaches based on these principles have been investigated. It has been reported that antioxidants in foods might play a role in human aging. To clarify the current recognition and positioning of the relationship between these food antioxidants and aging, this review is presented in the following order: (1) aging theories, (2) food and aging, and (3) individual food antioxidants and aging. Clarifying the significance of food antioxidants in the field of aging will lead to the development of strategies to achieve healthy human aging
Cyclophosphamide Promotes Arrested Development of the Dental Root in Mice
Cyclophosphamide (CPA) is a commonly used chemotherapeutic agent to treat cancer. Among its many side effects is the well-known consequence on tooth development when administered at early ages. This study elucidated the effects of CPA on development of the mandibular molar in mice. Mice received a single intraperitoneal injection of CPA at different doses and development times. CPA treatment led to weight loss and alopecia but had no effect on disturbances in tooth eruption or crown shape. However, at higher doses, there was arrested root development and early apical foramen closure histologically related to the formation of the cervical loop structure in the apical portion of the root. In cell culture experiments, the Hertwig\u27s epithelial root sheath cell line (HERS01a) was cultured with or without CPA. At high doses of CPA, HERS01a cells showed decreases in E-cadherin expression, while N-cadherin expression was upregulated, indicating that this cadherin switch may promote an epithelial-to-mesenchymal transition (EMT)-like phenomenon. These findings suggest that administration of high doses of CPA can lead to arrested root development of the molars and an EMT-like phenomenon.福岡歯科大学2019年
Effects of serratus plane block and epidural analgesia on stress hormones after thoracoscopic lung surgery: a randomized trial.
Serratus-intercostal plane block (SPB) is performed in thoracic surgery and breast cancer surgery because it is safer and easier to perform than epidural anesthesia. However, the effect of SPB on stress hormones has not been investigated. Patients with lung cancer who were scheduled to undergo video-assisted thoracoscopic surgery (VATS) during the period from September 2017 to April 2018 were included in this single-center randomized trial. The institutional ethics committee approved this study (approval No. 2802-1). Patients were assigned to group B (SPB) or group E (epidural anesthesia). Levobupivacaine was administered as a local anesthetic to either the epidural space or serratus plane space. Blood samples were taken to measure levels of stress hormones including adrenaline, noradrenaline, dopamine, cortisol, and glucose at the induction of anesthesia and on the day following surgery. Sixteen patients were included in the current study. Seven of those patients were assigned to group B and the other 9 patients were assigned to group E. Plasma adrenaline level in group B was significantly higher than that in group E postoperatively (P = 0.007). However, other markers were not different between the two groups, and there was no difference in pain scores between the two groups. In conclusion, SPB is an alternative analgesic method to epidural anesthesia in patients undergoing VATS
Osteogenic potential for replacing cells in rat cranial defects implanted with a DNA/protamine complex paste.
Osteoinductive scaffolds are required for bone tissue engineering. The aim of the present study was to assess the osteoinductive capacity of deoxyribonucleic acid (DNA)/protamine complexes in a rat model of critical-size calvarial defects. In addition, we investigated whether cultured mesenchymal-like cells (DP-cells) outgrown from DNA/protamine complex engrafted defects could differentiate to become osteogenic cells in vitro. DNA/protamine complexes were prepared by reactions between DNA and protamine sulfate solutions with stirring. Critical-sized (8mm) calvarial defects were created in the central parietal bones of adult rats. Defects were either left empty or treated with DNA/protamine complex scaffolds. Subsequently, micro-computed tomography (micro-CT), histological, and immunohistochemical analyses were performed. Micro-CT and histological assays showed that DNA/protamine complex engrafted defects had enhanced bone regeneration. DP-cells were expanded from explants of DNA/protamine complex engrafted defects using an explant outgrowth culture system. Osteogenesis-related factors were assessed in DP-cells after treatment with an osteoblast-inducing reagent (OIR). After 3months, nearly complete healing was observed for DNA/protamine complex engrafted calvarial defects. Increased alkaline phosphatase (ALP) activity and Alizarin red staining were found for cultured DP-cells. These cells had high expression levels of osteogenic genes, including those for RUNX-2, ALP, osteopontin, and osteocalcin. These results indicated that DNA/protamine complexes could facilitate bone regeneration in calvarial defects. Moreover, in vitro osteogenic induction experiments showed that DP-cells outgrown from DNA/protamine engrafted defects had an osteogenic potential. Based on these results, we suggest that DNA/protamine complexes may recruit osteocompetent cells in these defects, where they differentiate to osteogenic cells.福岡歯科大学2015年
Stereoselective photodimerisation of chalcones in the molten state
Photodimerisations of chalcone and its derivatives in the molten state proceed efficiently and stereoselectively to give rac-anti-head-to-head dimers in all cases tested
CCR8 leads to eosinophil migration and regulates neutrophil migration in murine allergic enteritis
Allergic enteritis (AE) is a gastrointestinal form of food allergy. This study aimed to elucidate cellular and molecular mechanisms of AE using a murine model. To induce AE, BALB/c wild type (WT) mice received intraperitoneal sensitization with ovalbumin (an egg white allergen) plus ALUM and feeding an egg white (EW) diet. Microarray analysis showed enhanced gene expression of CC chemokine receptor (CCR) 8 and its ligand, chemokine CC motif ligand (CCL) 1 in the inflamed jejunum. Histological and FACS analysis showed that CCR8 knock out (KO) mice exhibited slightly less inflammatory features, reduced eosinophil accumulation but accelerated neutrophil accumulation in the jejunums, when compared to WT mice. The concentrations of an eosinophil chemoattractant CCL11 (eotaxin-1), but not of IL-5, were reduced in intestinal homogenates of CCR8KO mice, suggesting an indirect involvement of CCR8 in eosinophil accumulation in AE sites by inducing CCL11 expression. The potential of CCR8 antagonists to treat allergic asthma has been discussed. However, our results suggest that CCR8 blockade may promote neutrophil accumulation in the inflamed intestinal tissues, and not be a suitable therapeutic target for AE, despite the potential to reduce eosinophil accumulation. This study advances our knowledge to establish effective anti-inflammatory strategies in AE treatment.Fil: Blanco-Pérez, Frank. Paul-ehrlich-institut;Fil: Kato, Yoichiro. Tokyo Women's Medical University;Fil: Gonzalez-Menendez, Irene. Universitätsklinikum Tübingen Medizinische Fakultät;Fil: Laiño, Jonathan Emiliano. Paul-ehrlich-institut;Fil: Ohbayashi, Masaharu. Toyohashi Sozo University;Fil: Burggraf, Manja. Paul-ehrlich-institut;Fil: Krause, Maren. Paul-ehrlich-institut;Fil: Kirberg, Jörg. Paul-ehrlich-institut;Fil: Iwakura, Yoichiro. Tokyo University Of Science;Fil: Martella, Manuela. Universitätsklinikum Tübingen Medizinische Fakultät;Fil: Quintanilla-Martinez, Leticia. Universitätsklinikum Tübingen Medizinische Fakultät;Fil: Shibata, Noriyuki. Tokyo Women's Medical University;Fil: Vieths, Stefan. Paul-ehrlich-institut;Fil: Scheurer, Stephan. Paul-ehrlich-institut;Fil: Toda, Masako. Paul-ehrlich-institut; . Tohoku University
Median raphe serotonergic neurons projecting to the interpeduncular nucleus control preference and aversion
不快感を誘発するセロトニン神経を発見 --セロトニン神経の多様性が明らかに--. 京都大学プレスリリース. 2022-12-23.Appropriate processing of reward and aversive information is essential for survival. Although a critical role of serotonergic neurons in the dorsal raphe nucleus (DRN) in reward processing has been shown, the lack of rewarding effects with selective serotonin reuptake inhibitors (SSRIs) implies the presence of a discrete serotonergic system playing an opposite role to the DRN in the processing of reward and aversive stimuli. Here, we demonstrated that serotonergic neurons in the median raphe nucleus (MRN) of mice process reward and aversive information in opposite directions to DRN serotonergic neurons. We further identified MRN serotonergic neurons, including those projecting to the interpeduncular nucleus (5-HTMRN→IPN), as a key mediator of reward and aversive stimuli. Moreover, 5-HT receptors, including 5-HT2A receptors in the interpeduncular nucleus, are involved in the aversive properties of MRN serotonergic neural activity. Our findings revealed an essential function of MRN serotonergic neurons, including 5-HTMRN→IPN, in the processing of reward and aversive stimuli
- …