39 research outputs found

    c-Myb regulates matrix metalloproteinases 1/9, and cathepsin D: implications for matrix-dependent breast cancer cell invasion and metastasis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The c-Myb transcription factor is essential for the maintenance of stem-progenitor cells in bone marrow, colon epithelia, and neurogenic niches. c-Myb malfunction contributes to several types of malignancies including breast cancer. However, the function of c-Myb in the metastatic spread of breast tumors remains unexplored. In this study, we report a novel role of c-Myb in the control of specific proteases that regulate the matrix-dependent invasion of breast cancer cells.</p> <p>Results</p> <p>Ectopically expressed c-Myb enhanced migration and ability of human MDA-MB-231 and mouse 4T1 mammary cancer cells to invade Matrigel but not the collagen I matrix <it>in vitro</it>. c-Myb strongly increased the expression/activity of cathepsin D and matrix metalloproteinase (MMP) 9 and significantly downregulated MMP1. The gene coding for cathepsin D was suggested as the c-Myb-responsive gene and downstream effector of the migration-promoting function of c-Myb. Finally, we demonstrated that c-Myb delayed the growth of mammary tumors in BALB/c mice and affected the metastatic potential of breast cancer cells in an organ-specific manner.</p> <p>Conclusions</p> <p>This study identified c-Myb as a matrix-dependent regulator of invasive behavior of breast cancer cells.</p

    Cell segmentation methods for label-free contrast microscopy: review and comprehensive comparison

    Get PDF
    Because of its non-destructive nature, label-free imaging is an important strategy for studying biological processes. However, routine microscopic techniques like phase contrast or DIC suffer from shadow-cast artifacts making automatic segmentation challenging. The aim of this study was to compare the segmentation efficacy of published steps of segmentation work-flow (image reconstruction, foreground segmentation, cell detection (seed-point extraction) and cell (instance) segmentation) on a dataset of the same cells from multiple contrast microscopic modalities

    Nanoparticles as a biorecognition platform in combination with LA-ICP-MS

    Get PDF
    Metal nanoparticles proved to be effective signaling tags in combination with laser ablation followed by inductively coupled plasma mass spectrometric detection. The surface may be suitably modified by various biorecognition elements such as antibodies or aptamers. Moreover, molecularly imprinted polymers can be prepared on their surface. In this study, the biorecognition capabilities of nanoparticles functionalized by antibodies and molecularly imprinted polymers were compared

    Quantitative Phase Dynamics of Cancer Cell Populations Affected by Blue Light

    Get PDF
    Increased exposition to blue light may induce many changes in cell behavior and significantly affect the critical characteristics of cells. Here we show that multimodal holographic microscopy (MHM) within advanced image analysis is capable of correctly distinguishing between changes in cell motility, cell dry mass, cell density, and cell death induced by blue light. We focused on the effect of blue light with a wavelength of 485 nm on morphological and dynamical parameters of four cell lines, malignant PC-3, A2780, G361 cell lines, and the benign PNT1A cell line. We used MHM with blue light doses 24 mJ/cm2, 208 mJ/cm2 and two kinds of expositions (500 and 1000 ms) to acquire real-time quantitative phase information about cellular parameters. It has been shown that specific doses of the blue light significantly influence cell motility, cell dry mass and cell density. These changes were often specific for the malignant status of tested cells. Blue light dose 208 mJ/cm2 × 1000 ms affected malignant cell motility but did not change the motility of benign cell line PNT1A. This light dose also significantly decreased proliferation activity in all tested cell lines but was not so deleterious for benign cell line PNT1A as for malignant cells. Light dose 208 mJ/cm2 × 1000 ms oppositely affected cell mass in A2780 and PC-3 cells and induced different types of cell death in A2780 and G361 cell lines. Cells obtained the least damage on lower doses of light with shorter time of exposition

    Cisplatin enhances cell stiffness and decreases invasiveness rate in prostate cancer cells by actin accumulation

    Get PDF
    We focused on the biomechanical and morphological characteristics of prostate cancer cells and their changes resulting from the effect of docetaxel, cisplatin, and long-term zinc supplementation. Cell population surviving the treatment was characterized as follows: cell stiffness was assessed by atomic force microscopy, cell motility and invasion capacity were determined by colony forming assay, wound healing assay, coherence-controlled holographic microscopy, and real-time cell analysis. Cells of metastatic origin exhibited lower height than cells derived from the primary tumour. Cell dry mass and CAV1 gene expression followed similar trends as cell stiffness. Docetaxel- and cisplatin-surviving cells had higher stiffness, and decreased motility and invasive potential as compared to non-treated cells. This effect was not observed in zinc(II)-treated cells. We presume that cell stiffness changes may represent an important overlooked effect of cisplatin-based anti-cancer drugs. Atomic force microscopy and confocal microscopy data images used in our study are available for download in the Zenodo repository (https://zenodo.org/, Digital Object Identifiers:10.5281/zenodo.1494935)

    Autophagy modulators influence the content of important signalling molecules in PS-positive extracellular vesicles

    Get PDF
    Extracellular vesicles (EVs) are important mediators of intercellular communication in the tumour microenvironment. Many studies suggest that cancer cells release higher amounts of EVs exposing phosphatidylserine (PS) at the surface. There are lots of interconnections between EVs biogenesis and autophagy machinery. Modulation of autophagy can probably affect not only the quantity of EVs but also their content, which can deeply influence the resulting pro-tumourigenic or anticancer effect of autophagy modulators. In this study, we found that autophagy modulators autophinib, CPD18, EACC, bafilomycin A1 (BAFA1), 3-hydroxychloroquine (HCQ), rapamycin, NVP-BEZ235, Torin1, and starvation significantly alter the composition of the protein content of phosphatidylserine-positive EVs (PS-EVs) produced by cancer cells. The greatest impact had HCQ, BAFA1, CPD18, and starvation. The most abundant proteins in PS-EVs were proteins typical for extracellular exosomes, cytosol, cytoplasm, and cell surface involved in cell adhesion and angiogenesis. PS-EVs protein content involved mitochondrial proteins and signalling molecules such as SQSTM1 and TGF ss 1 pro-protein. Interestingly, PS-EVs contained no commonly determined cytokines, such as IL-6, IL-8, GRO-a, MCP-1, RANTES, and GM-CSF, which indicates that secretion of these cytokines is not predominantly mediated through PS-EVs. Nevertheless, the altered protein content of PS-EVs can still participate in the modulation of the fibroblast metabolism and phenotype as p21 was accumulated in fibroblasts influenced by EVs derived from CPD18-treated FaDu cells. The altered protein content of PS-EVs (data are available via ProteomeXchange with identifier PXD037164) also provides information about the cellular compartments and processes that are affected by the applied autophagy modulators
    corecore