8 research outputs found

    Chiral porous organic frameworks: synthesis, chiroptical properties, and asymmetric organocatalytic applications

    Get PDF
    Chiral porous organic frameworks have emerged in the last decade as candidates for heterogeneous asymmetric organocatalysis. This review aims to provide a summary of the synthetic strategies towards the design of chiral organic materials, the characterization techniques used to evaluate their chirality, and their applications in asymmetric organocatalysis. We briefly describe the types of porous organic frameworks, including crystalline (covalent organic frameworks, COFs) and amorphous (conjugated microporous polymers, CMPs; covalent triazine frameworks, CTFs and porous aromatic frameworks, PAFs) materials. Furthermore, the strategies reported to incorporate chirality in porous organic materials are presented. We finally focus on the applications of chiral porous organic frameworks in asymmetric organocatalytic reactions, summarizing and categorizing all the available literature in the field.Ministerio de Ciencia e Innovación | Ref. PRE2020-092295Ministerio de Ciencia e Innovación | Ref. TED2021-131760B-I00Xunta de Galicia | Ref. ED431C 2017/51Universidad Autónoma de Madrid, Ministerio de Universidades y Unión Euopea | Ref. CA3/RSUE/2021-00648Ministerio de Ciencia e Innovación | Ref. RYC2020-030414-IMinisterio de Ciencia e Innovación | Ref. PID2019–110637RB-I0

    Highly concentrated and stable few-layers graphene suspensions in pure and volatile organic solvents

    Full text link
    Highly stable graphene suspensions in pure organic solvents, including volatile solvents such as ethanol, tetrahydrofurane, chloroform, acetone or toluene have been prepared by re-dispersion of a graphene-powder. Such re-dispersable solid is produced by precipitation or solvent elimination from graphene suspensions obtained by sonication of graphite in several organic solvent-water mixtures. Re-dispersion is feasible in a wide range of pure organic solvents, obtaining high quality few-layers graphene flakes stable in suspension for months. As a proof-of-concept, on-glass spray deposition of some of these suspensions, e.g. ethanol or tetrahydrofuran, results on electrically conductive transparent coatings. These results suggest industrial potential use of the scalable technology here developed to fabricate low-cost devices with many different potential applicationsThis research was financially supported by Abengoa Co., the Spanish Ministry of Economy and Competitiveness (MAT2013-46753-C2-1-P and RYC2012-09864) and Comunidad de Madrid (CAM 09-S2009_MAT-1467

    Crystalline fibres of a covalent organic framework through bottom-up microfluidic synthesis

    Full text link
    A microfluidic chip has been used to prepare fibres of a porous polymer with high structural order, setting a precedent for the generation of a wide variety of materials using this reagent mixing approach that provides unique materials not accessible easily through bulk processes. The reaction between 1,3,5-tris(4-aminophenyl)benzene and 1,3,5-benzenetricarbaldehyde in acetic acid under continuous microfluidic flow conditions leads to the formation of a highly crystalline and porous covalent organic framework (hereafter denoted as MF-COF-1), consisting of fibrillar micro-structures, which have mechanical stability that allows for direct drawing of objects on a surfaceFinancial support from Spanish Government (Projects MAT2013-46753-C2-1-P and CTQ2014-53486-R) and FEDER are acknowledged. A. A. and J. P. L. would like to thank the financial support from the Swiss National Science Foundation (SNSF) through the project no. 200021_16017
    corecore