437 research outputs found

    Inhibitory Activity of Leaves Extracts of Citrullus colocynthis Schrad. on HT29 Human Colon Cancer Cells

    Get PDF
    Aims: Citrullus colocynthis is a plant endemic in Asia, Africa and in the Mediterranean basin. It is used in folk medicine against infections, inflammations and cardiovascular and immune-related diseases. There are further evidences of the use of Citrullus colocynthis Schrad in the treatment of cancer in traditional practices. The present study aimed to determine the potential antiproliferative effects of different Citrullus colocynthis leaf extracts on human cancer cells. Methodology: Antiproliferative and antioxidant effects on HT-29 human colon cancer cells were detected by MTS assay and a modified protocol of the alkaline Comet assay. In vitro antioxidant activities of different leaf extracts were evaluated through DPPH, \u3b2-carotene/linoleic acid and reducing power assays. Results: The leaf chloroform extract exhibited the higher cell growth inhibitory activity without induction of DNA damage; it showed to be able to significantly decrease DNA damage induced by H2O2 (100 M). This antioxidant activity seems to be comparable to that of vitamin C (1 mM). Ethyl acetate, acetone and methanol leaf extracts showed to be the most effective in reducing the stable free DPPH radical (IC50 =113 g/ml), in transforming the Fe3+ to Fe2+ (IC50 = 134 \ub5g/ml) and in inducing linoleic acid oxidation with an inhibition of 31.9 %. Conclusion: Our results confirm the antiproliferative potential of Citrullus colocynthis Schrad. on human cancer cells

    Bayesian reconstruction of binary media with unresolved fine-scale spatial structures

    Get PDF
    We present a Bayesian technique to estimate the fine-scale properties of a binary medium from multiscale observations. The binary medium of interest consists of spatially varying proportions of low and high permeability material with an isotropic structure. Inclusions of one material within the other are far smaller than the domain sizes of interest, and thus are never explicitly resolved. We consider the problem of estimating the spatial distribution of the inclusion proportion, F(x), and a characteristic length-scale of the inclusions, δ, from sparse multiscale measurements. The observations consist of coarse-scale (of the order of the domain size) measurements of the effective permeability of the medium (i.e., static data) and tracer breakthrough times (i.e., dynamic data), which interrogate the fine scale, at a sparsely distributed set of locations. This ill-posed problem is regularized by specifying a Gaussian process model for the unknown field F(x) and expressing it as a superposition of Karhunen–Loève modes. The effect of the fine-scale structures on the coarse-scale effective permeability i.e., upscaling, is performed using a subgrid-model which includes δ as one of its parameters. A statistical inverse problem is posed to infer the weights of the Karhunen–Loève modes and δ, which is then solved using an adaptive Markov Chain Monte Carlo method. The solution yields non-parametric distributions for the objects of interest, thus providing most probable estimates and uncertainty bounds on latent structures at coarse and fine scales. The technique is tested using synthetic data. The individual contributions of the static and dynamic data to the inference are also analyzed.United States. Dept. of Energy. National Nuclear Security Administration (Contract DE-AC04_94AL85000

    'Mutations in LAMB2 associate with albuminuria and Optic Nerve Hypoplasia with Hypopituitarism'

    Get PDF
    CONTEXT: Mutations in LAMB2, encoding the basement membrane protein, laminin β2, are associated with an autosomal recessive disorder characterized by congenital nephrotic syndrome, ocular abnormalities and neurodevelopmental delay (Pierson Syndrome). CASE DESCRIPTION: This report describes a twelve year old boy with short stature, visual impairment and developmental delay who presented with macroscopic haematuria and albuminuria. He had isolated growth hormone deficiency, optic nerve hypoplasia and a small anterior pituitary with corpus callosum dysgenesis on his cranial MRI, thereby supporting a diagnosis of optic nerve hypoplasia syndrome. Renal histopathology revealed focal segmental glomerulosclerosis. Using next generation sequencing on a targeted gene panel for steroid resistant nephrotic syndrome, compound heterozygous missense mutations were identified in LAMB2 [c.737G>A p.Arg246Gln, c.3982G>C p.Gly1328Arg]. Immunohistochemical analysis revealed reduced glomerular laminin β2 expression compared to control kidney and a thin basement membrane on electron microscopy. Laminin β2 is expressed during pituitary development and Lamb2-/- mice exhibit stunted growth, abnormal neural retinae and here, we show, abnormal parenchyma of the anterior pituitary gland. CONCLUSION: We propose that patients with genetically undefined optic nerve hypoplasia syndrome should be screened for albuminuria and if present, screened for mutations in LAMB2

    Robust Online Hamiltonian Learning

    Get PDF
    In this work we combine two distinct machine learning methodologies, sequential Monte Carlo and Bayesian experimental design, and apply them to the problem of inferring the dynamical parameters of a quantum system. We design the algorithm with practicality in mind by including parameters that control trade-offs between the requirements on computational and experimental resources. The algorithm can be implemented online (during experimental data collection), avoiding the need for storage and post-processing. Most importantly, our algorithm is capable of learning Hamiltonian parameters even when the parameters change from experiment-to-experiment, and also when additional noise processes are present and unknown. The algorithm also numerically estimates the Cramer-Rao lower bound, certifying its own performance.Comment: 24 pages, 12 figures; to appear in New Journal of Physic

    Fabrication and characterization of dual function nanoscale pH-scanning ion conductance microscopy (SICM) probes for high resolution pH mapping

    Get PDF
    The easy fabrication and use of nanoscale dual function pH-scanning ion conductance microscopy (SICM) probes is reported. These probes incorporate an iridium oxide coated carbon electrode for pH measurement and an SICM barrel for distance control, enabling simultaneous pH and topography mapping. These pH-SICM probes were fabricated rapidly from laser pulled theta quartz pipets, with the pH electrode prepared by in situ carbon filling of one of the barrels by the pyrolytic decomposition of butane, followed by electrodeposition of a thin layer of hydrous iridium oxide. The other barrel was filled with an electrolyte solution and Ag/AgCl electrode as part of a conductance cell for SICM. The fabricated probes, with pH and SICM sensing elements typically on the 100 nm scale, were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and various electrochemical measurements. They showed a linear super-Nernstian pH response over a range of pH (pH 2–10). The capability of the pH-SICM probe was demonstrated by detecting both pH and topographical changes during the dissolution of a calcite microcrystal in aqueous solution. This system illustrates the quantitative nature of pH-SICM imaging, because the dissolution process changes the crystal height and interfacial pH (compared to bulk), and each is sensitive to the rate. Both measurements reveal similar dissolution rates, which are in agreement with previously reported literature values measured by classical bulk methods

    Investigation of Er3+ Ions Reinforced Zinc-Phosphate Glasses for Ionizing Radiation Shielding Applications

    Full text link
    Melt quenching technique is used for preparing glasses with chemical formula (70P2 O5)– (16 − x)CdO–(14ZnO)–(xEr2 O3), (x = 1–6 mol%). These glasses were named Er1, Er2, Er3, Er4, Er5, and Er6, respectively. Photon buildup factors, fast neutron absorption, and electron stopping of the prepared glasses were examined. Glasses’ density was varied from 3.390 ± 0.003 for the Er1 glass sample to 3.412 ± 0.003 for the Er6 glass sample. The Buildup factor (BUF) spectra have relatively higher values in the Compton Scattering (CS) dominated areas compared to both Photoelectric effect (PE), and Pair Production (PP) dominated energy regions. The highest BUF appeared at the Er atom K-absorption edge, whose intensity increases as the molar concentration of Er2 O3 in the glasses increases. The photon absorption efficiency (PAE) of the glasses increases according to the trend (PAE)Er1 < (PAE)Er2 < (PAE)Er3 < (PAE)Er4 < (PAE)Er5 < (PAE)Er6. Fast neutron removal cross-section, FNRC (ΣR) values of the glasses obtained via calculation varied from 0.1045–0.1039 cm−1 for Er1–Er6. Furthermore, the continuous slowing down approximation mode (CSDA) range enhances the kinetic energy of electrons for all glasses. Generally, results revealed that the investigated glasses could be applied for radiation shielding and dosimetric media. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.Taif University Researchers Supporting Project number (TURSP-2020/23), Taif University, Taif Saudi Arabia. "The APC was covered by "Dunarea de Jos" University of Galati, Romania, through grant no. RF3621/2021

    Inference of Experimental Radial Impurity Transport on Alcator C-Mod: Bayesian Parameter Estimation and Model Selection

    Get PDF
    We present a fully Bayesian approach for the inference of radial profiles of impurity transport coefficients and compare its results to neoclassical, gyrofluid and gyrokinetic modeling. Using nested sampling, the Bayesian Impurity Transport InferencE (BITE) framework can handle complex parameter spaces with multiple possible solutions, offering great advantages in interpretative power and reliability with respect to previously demonstrated methods. BITE employs a forward model based on the pySTRAHL package, built on the success of the well-known STRAHL code [Dux, IPP Report, 2004], to simulate impurity transport in magnetically-confined plasmas. In this paper, we focus on calcium (Ca, Z=20) Laser Blow-Off injections into Alcator C-Mod plasmas. Multiple Ca atomic lines are diagnosed via high-resolution X-ray Imaging Crystal Spectroscopy and Vacuum Ultra-Violet measurements. We analyze a sawtoothing I-mode discharge for which neoclassical and turbulent (quasilinear and nonlinear) predictions are also obtained. We find good agreement in diffusion across the entire radial extent, while turbulent convection and density profile peaking are estimated to be larger in experiment than suggested by theory. Efforts and challenges associated with the inference of experimental pedestal impurity transport are discussed.Comment: 38 pages, 19 figures, submitted for publication in Nuclear Fusio

    Comparison between the Accuracy of Endoanal Ultrasonography and Body Coil MRI in Preoperative Assessment of Internal Opening of Perianal Fistula Complex

    Get PDF
    Abstract Background and Aim: Surgery for anal fistula is a commonly performed practice. Integral part of fistula surgery is identification of the internal opening if high recurrence rate is to be diminished. In this study, accuracy of endoanal ultrasound versus body coil M.R.I in detection of the internal fistula opening was evaluated by comparing both modalities with the intra operative findings as a standard reference

    SARS-CoV-2 infection in acute pancreatitis increases disease severity and 30-day mortality: COVID PAN collaborative study

    Get PDF
    Objective: There is emerging evidence that the pancreas may be a target organ of SARS-CoV-2 infection. This aim of this study was to investigate the outcome of patients with acute pancreatitis (AP) and coexistent SARS-CoV-2 infection. Design: A prospective international multicentre cohort study including consecutive patients admitted with AP during the current pandemic was undertaken. Primary outcome measure was severity of AP. Secondary outcome measures were aetiology of AP, intensive care unit (ICU) admission, length of hospital stay, local complications, acute respiratory distress syndrome (ARDS), persistent organ failure and 30-day mortality. Multilevel logistic regression was used to compare the two groups. Results: 1777 patients with AP were included during the study period from 1 March to 23 July 2020. 149 patients (8.3%) had concomitant SARS-CoV-2 infection. Overall, SARS-CoV-2-positive patients were older male patients and more likely to develop severe AP and ARDS (p<0.001). Unadjusted analysis showed that SARS-CoV-2-positive patients with AP were more likely to require ICU admission (OR 5.21, p<0.001), local complications (OR 2.91, p<0.001), persistent organ failure (OR 7.32, p<0.001), prolonged hospital stay (OR 1.89, p<0.001) and a higher 30-day mortality (OR 6.56, p<0.001). Adjusted analysis showed length of stay (OR 1.32, p<0.001), persistent organ failure (OR 2.77, p<0.003) and 30-day mortality (OR 2.41, p<0.04) were significantly higher in SARS-CoV-2 co-infection. Conclusion: Patients with AP and coexistent SARS-CoV-2 infection are at increased risk of severe AP, worse clinical outcomes, prolonged length of hospital stay and high 30-day mortality
    corecore