25 research outputs found

    Broad betacoronavirus neutralization by a stem helix–specific human antibody

    Full text link
    The spillovers of betacoronaviruses in humans and the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants highlight the need for broad coronavirus countermeasures. We describe five monoclonal antibodies (mAbs) cross-reacting with the stem helix of multiple betacoronavirus spike glycoproteins isolated from COVID-19 convalescent individuals. Using structural and functional studies, we show that the mAb with the greatest breadth (S2P6) neutralizes pseudotyped viruses from three different subgenera through the inhibition of membrane fusion, and we delineate the molecular basis for its cross-reactivity. S2P6 reduces viral burden in hamsters challenged with SARS-CoV-2 through viral neutralization and Fc-mediated effector functions. Stem helix antibodies are rare, oftentimes of narrow specificity, and can acquire neutralization breadth through somatic mutations. These data provide a framework for structure-guided design of pan-betacoronavirus vaccines eliciting broad protection

    Maturation of SARS-CoV-2 Spike-specific memory B cells drives resilience to viral escape

    Full text link
    SUMMARYMemory B cells (MBCs) generate rapid antibody responses upon secondary encounter with a pathogen. Here, we investigated the kinetics, avidity and cross-reactivity of serum antibodies and MBCs in 155 SARS-CoV-2 infected and vaccinated individuals over a 16-month timeframe. SARS-CoV-2-specific MBCs and serum antibodies reached steady-state titers with comparable kinetics in infected and vaccinated individuals. Whereas MBCs of infected individuals targeted both pre- and postfusion Spike (S), most vaccine-elicited MBCs were specific for prefusion S, consistent with the use of prefusion-stabilized S in mRNA vaccines. Furthermore, a large fraction of MBCs recognizing postfusion S cross-reacted with human betacoronaviruses. The avidity of MBC-derived and serum antibodies increased over time resulting in enhanced resilience to viral escape by SARS-CoV-2 variants, including Omicron BA.1 and BA.2 sub-lineages, albeit only partially for BA.4 and BA.5 sublineages. Overall, the maturation of high-affinity and broadly-reactive MBCs provides the basis for effective recall responses to future SARS-CoV-2 variants

    Cream Formulation Impact on Topical Administration of Engineered Colloidal Nanoparticles

    Get PDF
    In order to minimize the impact of systemic toxicity of drugs in the treatment of local acute and chronic inflammatory reactions, the achievement of reliable and efficient delivery of therapeutics in/through the skin is highly recommended. While the use of nanoparticles is now an established practice for drug intravenous targeted delivery, their transdermal penetration is still poorly understood and this important administration route remains almost unexplored. In the present study, we have synthesized magnetic (iron oxide) nanoparticles (MNP) coated with an amphiphilic polymer, developed a water-in-oil emulsion formulation for their topical administration and compared the skin penetration routes with the same nanoparticles deposited as a colloidal suspension. Transmission and scanning electron microscopies provided ultrastructural evidence that the amphiphilic nanoparticles (PMNP) cream formulation allowed the efficient penetration through all the skin layers with a controllable kinetics compared to suspension formulation. In addition to the preferential follicular pathway, also the intracellular and intercellular routes were involved. PMNP that crossed all skin layers were quantified by inductively coupled plasma mass spectrometry. The obtained data suggests that combining PMNP amphiphilic character with cream formulation improves the intradermal penetration of nanoparticles. While PMNP administration in living mice via aqueous suspension resulted in preferential nanoparticle capture by phagocytes and migration to draining lymph nodes, cream formulation favored uptake by all the analyzed dermis cell types, including hematopoietic and non-hematopoietic. Unlike aqueous suspension, cream formulation also favored the maintenance of nanoparticles in the dermal architecture avoiding their dispersion and migration to draining lymph nodes via afferent lymphatics

    Science et fiction

    No full text
    Au fil des années les frontières entre science et fiction ont été mises en cause, dépassées et traversées en plusieurs directions. Cela témoigne d’un perpétuel échange entre les deux domaines, caractérisé par une réciprocité productrice de sens. C’est cet échange qui est le point de départ du numéro 11 de RILUNE – Revue des littératures européennes, qui se propose d’enquêter sur les entrelacements entre la science et la fiction dans les littératures européennes, en visant à s’insérer dans le vif débat actuel, en le traversant par des approches comparatistes et interdisciplinaires. Notre intérêt se porte sur les différentes formes de fiction littéraire, tant narratives que dramatiques, du Moyen-âge à nos jours. Les contributions de ce volume s’organisent selon trois directions complémentaires : (I) La littérature face aux mutations des savoirs ; (II) L’homme, les sciences et la société ; (III) L’imaginaire scientifique sous la loupe de la fiction

    CD14 and NFAT mediate lipopolysaccharide-induced skin edema formation in mice

    No full text
    Inflammation is a multistep process triggered when innate immune cells — for example, DCs — sense a pathogen or injured cell or tissue. Edema formation is one of the first steps in the inflammatory response; it is fundamental for the local accumulation of inflammatory mediators. Injection of LPS into the skin provides a model for studying the mechanisms of inflammation and edema formation. While it is known that innate immune recognition of LPS leads to activation of numerous transcriptional activators, including nuclear factor of activated T cells (NFAT) isoforms, the molecular pathways that lead to edema formation have not been determined. As PGE2 regulates many proinflammatory processes, including swelling and pain, and it is induced by LPS, we hypothesized that PGE2 mediates the local generation of edema following LPS exposure. Here, we show that tissue-resident DCs are the main source of PGE2 and the main controllers of tissue edema formation in a mouse model of LPS-induced inflammation. LPS exposure induced expression of microsomal PGE synthase-1 (mPGES-1), a key enzyme in PGE2 biosynthesis. mPGES-1 activation, PGE2 production, and edema formation required CD14 (a component of the LPS receptor) and NFAT. Therefore, tissue edema formation induced by LPS is DC and CD14/NFAT dependent. Moreover, DCs can regulate free antigen arrival at the draining lymph nodes by controlling edema formation and interstitial fluid pressure in the presence of LPS. We therefore suggest that the CD14/NFAT/mPGES-1 pathway represents a possible target for antiinflammatory therapies

    Cytofluorimetric analysis showing PMNP nanoparticles uptake by mouse skin and lymph node cells.

    No full text
    <p>PMNP suspension (a, upper panels). Skin CD45-positive and negative cells showing CFSE incorporation. Note that most of the skin cells uptake PMNP nanoparticles administered with the cream formulation. (a, lower panels) CFSE-positive cells in the lymph nodes of mice that received PMNP nanoparticles via cream formulation or via sc administration. Note that only with sc PMNP administration, nanoparticle-positive cells can be detected in the draining lymph nodes. (b) Lymph node macrophages and dendritic cells, identified as CD11b- and CD11c-positive cells respectively, showing CFSE incorporation. Note that only when PMNP are administered sc, CFSE positive macrophages and dendritic cells can be detected in the lymph nodes.</p

    Fe<sub>3</sub>O<sub>4</sub> nanoparticles (MNP, a) synthesized in organic solvent and transferred to a water solution using PMA amphiphilic polymer (PMNP, b).

    No full text
    <p>MNP and PMNP were highly monodisperse in size as it is shown by TEM images (scale bars = 40 nm,). Part of the highly concentrated PMNP suspension (8 mg mL<sup>–1</sup>) was incorporated in a w/o cream (0.8 wt % concentration) (c).</p

    Fates of nanoparticles depending on the route of skin administration.

    No full text
    <p>Nanoparticle administered in a cream formulation are taken up by all the skin cell types and do no reach the draining lymph nodes. Nanoparticle administered with a sc injection in aqueous suspension are efficiently transported to the draining lymph nodes.</p

    Histological microphotograph of normal human skin section.

    No full text
    <p>Haematoxylin and eosin staining (original magnification 40Ă—) (a). <i>In vitro</i> diffusion studies of PMNP colloidal suspension or cream in human skin were carried out using Franz diffusion cells and diffused PMNP were quantified by ICP-OES analysis (b).</p
    corecore