3 research outputs found

    Maximally localized Wannier functions in LaMnO3 within PBE+U, hybrid functionals, and partially self-consistent GW: an efficient route to construct ab-initio tight-binding parameters for e_g perovskites

    Full text link
    Using the newly developed VASP2WANNIER90 interface we have constructed maximally localized Wannier functions (MLWFs) for the e_g states of the prototypical Jahn-Teller magnetic perovskite LaMnO3 at different levels of approximation for the exchange-correlation kernel. These include conventional density functional theory (DFT) with and without additional on-site Hubbard U term, hybrid-DFT, and partially self-consistent GW. By suitably mapping the MLWFs onto an effective e_g tight-binding (TB) Hamiltonian we have computed a complete set of TB parameters which should serve as guidance for more elaborate treatments of correlation effects in effective Hamiltonian-based approaches. The method-dependent changes of the calculated TB parameters and their interplay with the electron-electron (el-el) interaction term are discussed and interpreted. We discuss two alternative model parameterizations: one in which the effects of the el-el interaction are implicitly incorporated in the otherwise "noninteracting" TB parameters, and a second where we include an explicit mean-field el-el interaction term in the TB Hamiltonian. Both models yield a set of tabulated TB parameters which provide the band dispersion in excellent agreement with the underlying ab initio and MLWF bands.Comment: 30 pages, 7 figure

    Unconventional pairing originating from disconnected Fermi surfaces in the iron-based superconductor

    Full text link
    For the iron-based high TcT_c superconductor LaFeAsO1x_{1-x}Fx_x, we construct a minimal model, where all of the five Fe dd bands turn out to be involved. We then investigate the origin of superconductivity with a five-band random-phase approximation by solving the Eliashberg equation. We conclude that the spin fluctuation modes arising from the nesting between the disconnected Fermi pockets realise, basically, an extended s-wave pairing, where the gap changes sign across the nesting vector.Comment: 17pages, 4 figures, to be published in Physica C, Special Edition on Superconducting Pnictides, contains corrections to our previous paper PRL 101, 087004 (2008

    Spin Channels in Functionalized Graphene Nanoribbons

    Full text link
    We characterize the transport properties of functionalized graphene nanoribbons using extensive first-principles calculations based on density functional theory (DFT) that encompass both monovalent and divalent ligands, hydrogenated defects and vacancies. We find that the edge metallic states are preserved under a variety of chemical environments, while bulk conducting channels can be easily destroyed by either hydrogenation or ion or electron beams, resulting in devices that can exhibit spin conductance polarization close to unity.Comment: 14 pages, 5 figure
    corecore