11 research outputs found

    Does the Association between Depressive Symptomatology and Physical Activity Depend on Body Image Perception? A Survey of Students from Seven Universities in the UK

    Get PDF
    This cross-sectional study assessed the association between depression and PA in university students of both genders and the role of body image perception as a potential effect modifier. Undergraduate students (N = 3706) from seven universities in the UK completed a self-administered questionnaire that assessed sociodemographic information; a range of health, health behaviour and health awareness related factors; the modified version of Beck’s Depression Inventory (M-BDI); educational achievement, and different levels of physical activity (PA), such as moderate PA (at least 5 days per week moderate exercise of at least 30 minutes), and vigorous PA (at least 3 days per week vigorous exercise of at least 20 minutes). Only 12.4% of the sample achieved the international recommended level for moderate PA, and 33.1% achieved the recommendations for vigorous PA. Both moderate and vigorous PA were inversely related to the M-BDI score. Physically active students, regardless of the type of PA, were significantly more likely to perceive their health as good, to have higher health awareness, to perform strengthening exercises, and to be males. The stratified analyses indicated that the association between depression and PA differed by body image. In students perceiving their body image as ‘just right’, moderate (>4th percentile) and high (>5th percentile) M-BDI scores were inversely related to vigorous PA. However, in students who perceived their body image as ‘overweight’, the inverse association was only significant in those with high M-BDI scores. We conclude that the positive effect of PA on depression could be down modulated by the negative impact of a ‘distorted’ body image on depression. The practical implications of these findings are that PA programmes targeting persons with depressive symptoms should include effective components to enhance body image perception

    Feeling Healthy? A Survey of Physical and Psychological Wellbeing of Students from Seven Universities in the UK

    Get PDF
    University students’ physical and psychological health and wellbeing are important and comprise many variables. This study assessed perceived health status in addition to a range of physical and psychological wellbeing indicators of 3,706 undergraduate students from seven universities in England, Wales and Northern Ireland. We compared differences in these variables across males and females, and across the participating universities. The data was collected in 2007–2008. A self-administered questionnaire assessed socio-demographic information (e.g., gender, age), self-reported physical and psychological health data, as well as questions on health awareness, health service use, social support, burdens and stressors and university study related questions. While females generally reported more health problems and psychological burdens, male students felt that they received/had fewer persons to depend on for social support. The comparisons of health and wellbeing variables across the different universities suggested some evidence of ‘clustering’ of the variables under study, whereby favourable situations would be exhibited by a cluster of the variables that is encountered at some universities; and conversely, the clustering of less favourable variables as exhibited at other universities. We conclude that the level of health complaints and psychological problems/burdens is relatively high and calls for increased awareness of university administrators, leaders and policy makers to the health and well-being needs of their students. The observed clustering effects also indicated the need for local (university-specific) health and wellbeing profiles as basis and guidance for relevant health promotion programmes at universities

    Improving water quality in agricultural catchments: sediment and nutrient retention in field wetlands

    No full text
    A recent update of Water Framework Directive classifications in the UK indicates that only 28% of water bodies currently achieve good ecological status and that agriculture is one of the main sectors responsible for the pressures contributed by sediment and nutrients. The use of edge-of-field features, such as field wetlands - small sediment and pollutant trapping features (<500 m2) constructed along runoff pathways, is one set of mitigation options available to farmers. Before reaching the waterways, polluted runoff is slowed down by passage through the field wetland, allowing some sediment and nutrients to settle out. Although the principle of field wetlands is well accepted, and they are widely used in Scandinavia for diffuse pollution mitigation, there is little quantitative evidence of their capability for water quality improvement in the UK. Ten field wetlands have been constructed in the UK agricultural landscape in order to quantify the potential for sediment and nutrient retention and to provide guidelines on their likely effectiveness under various conditions. The ten sites covered different combinations of soil type, field wetland design, wetland size relative to catchment area and runoff source. Sediment and nutrient retention was measured by annual sediment surveys at each field wetland. Sediment trapping rates of 0.5 – 6 t ha-1 yr-1 were recorded on a sandy soil site, compared to 0.02 – 0.4 t ha-1 yr-1 on a silty soil site and 0.01 – 0.07 t ha-1 yr-1 on a clay soil site, although rainfall was a confounding factor, with much lower rainfall at the clay site during the monitoring period. Concentrations of total phosphorus, total nitrogen and total carbon in the sediments trapped were highest at the sandy site, where there was a wastewater input in addition to the agricultural runoff. The importance of land use, and ground cover in particular, was highlighted by a ten-fold increase in the sediment trapped in one field wetland from one year to the next when pasture was ploughed up for an arable crop. These multi-functional edge-of-field features have shown good potential for reduction of sediment and nutrient input to the waterways. In addition, field wetlands provide biodiversity benefits and in some circumstances may also contribute to flood attenuation, and should be considered alongside in-field measures as part of an integrated solution for catchment management

    Keeping agricultural soil out of rivers:evidence of sediment and nutrient accumulation within field wetlands in the UK

    Get PDF
    Intensification of agriculture has resulted in increased soil degradation and erosion, with associated pollution of surface waters. Small field wetlands, constructed along runoff pathways, offer one option for slowing down and storing runoff in order to allow more time for sedimentation and for nutrients to be taken up by plants or micro-organisms. This paper describes research to provide quantitative evidence for the effectiveness of small field wetlands in the UK landscape. Ten wetlands were built on four farms in Cumbria and Leicestershire, UK. Annual surveys of sediment and nutrient accumulation in 2010, 2011 and 2012 indicated that most sediment was trapped at a sandy site (70 tonnes over 3 years), compared to a silty site (40 tonnes over 3 years) and a clay site (2 tonnes over 3 years). The timing of rainfall was more important than total annual rainfall for sediment accumulation, with most sediment transported in a few intense rainfall events, especially when these coincided with bare soil or poor crop cover. Nutrient concentration within sediments was inversely related to median particle size, but the total mass of nutrients trapped was dependent on the total mass of sediment trapped. Ratios of nutrient elements in the wetland sediments were consistent between sites, despite different catchment characteristics across the individual wetlands. The nutrient value of sediment collected from the wetlands was similar to that of soil in the surrounding fields; dredged sediment was considered to have value as soil replacement but not as fertiliser. Overall, small field wetlands can make a valuable contribution to keeping soil out of rivers

    Sediment and nutrient trapping in field wetlands.

    No full text
    Agriculture has been identified as the largest sector contributing to diffuse water pollution. Field drains have been identified as a fast pathway for dissolved nutrients to reach the waterways, potentially bypassing conventional buffer zones. Field wetlands, (small, unlined ponds (< 500 m2) constructed in unproductive agricultural areas and designed to intercept runoff), are a simple and effective option for diffuse pollution mitigation, addressing both sediment-associated and dissolved pollutants. This paper describes the results of sediment and nutrient trapping from ten field wetlands built at four sites in the UK, covering a range of soil types and runoff sources. Sediment and nutrient retention in the wetlands was estimated from samples collected at the inlet and outlet of each wetland, as well as from an annual survey of the sediment retained in each wetland. Sediment masses trapped within the wetlands ranged from 0.3 – 1 t yr-1 at a clay soil site to 25 – 40 t yr-1 at a sandy soil site. At the sandy site, 30 – 70 kg yr-1 total phosphorus (TP) and 60 – 200 kg yr-1 total nitrogen (TN) was trapped with the sediment. Rainfall was a confounding factor, with much lower rainfall at the clay site during the monitoring period. Concentrations of both particulate and dissolved nutrients were observed to decrease between the inlet and outlet of wetland systems. At a sandy soil site, the average concentration of some nutrients was reduced by up to 80% in a wetland system with a long hydraulic residence time. Overall, these multi-functional edge-of-field features have shown good potential for reduction of sediment and nutrient input to the waterways and should be considered alongside in-field measures as part of an integrated solution for catchment management

    Reducing diffuse pollution in agricultural catchments: retention of sediment and nutrients in field wetlands

    No full text
    Diffuse water pollution continues to be an important environmental concern, with only 28% of surface waters in the UK currently classified as ‘good ecological status’ in a recent update of Water Framework Directive classifications. Agriculture has been identified as the largest sector associated with diffuse sources of nutrients and sediment. Field wetlands have been used for mitigation of diffuse pollution in Scandinavia but there is currently little quantitative evidence of their effectiveness in the UK. Ten field wetlands have been built at four sites in the UK, covering a range of soil types, runoff sources, wetland sizes and wetland designs. The wetlands, small (< 350 m2), unlined ponds constructed along runoff pathways, slow the connection between the pollution source and the waterways, and provide more opportunity for sediment and nutrients to settle out or be taken up by aquatic organisms. This paper describes sediment retention in all ten wetlands and nutrient retention at one highly polluted site. Sediment retention was estimated from annual surveys of the sediment build-up in each wetland. Sediment trapping rates were highest on a sandy soil site (0.5 – 6 t ha-1 yr-1), compared to a silty soil site (0.02 – 0.4 t ha-1 yr-1) and a clay soil site (0.01 – 0.07 t ha-1 yr-1). Nutrient retention was estimated from samples collected at the inlet and outlet of each wetland. At Whinton Hill, Cumbria, a wetland system with a long hydraulic residence time, concentrations of both particulate and dissolved nutrients were observed to decrease between the inlet and outlet of the wetland system. The average concentration of some nutrients was observed to reduce by up to 80%. Overall, small field wetlands have shown good potential for mitigation of diffuse pollution and should be considered alongside in-field measures as part of an integrated solution for catchment management

    The effectiveness of field wetlands in retaining pollutants from agricultural runoff: case studies from the UK

    No full text
    Field wetlands are one option available to farmers for mitigation of diffuse pollution from agriculture. Although used worldwide, there is little evidence for their effectiveness in the UK agricultural landscape. This paper describes the construction and monitoring of ten wetlands in the UK, with different combinations of soil type, wetland design, wetland size and runoff source. In the first two years after construction, all the wetlands trapped a substantial amount of sediment, with sandy sites having the highest trapping rates (>0.5 t ha-1 yr-1), followed by silty sites (0.02–0.4 t ha-1 yr-1) and clay sites (0.01–0.07 t ha-1 yr-1), although the lower rainfall at the clay sites was a confounding factor. Phosphorus trapping rates in the first year varied from 0.006–1 kg ha-1 yr-1. Overall, small field wetlands were shown to be an effective land management option for trapping sediment and nutrients

    A review of water quality policies in relation to public good benefits and community engagement in rural Ireland

    Get PDF
    This paper examines current recreational water use in the rural landscape in Ireland and reviews current EU policies and national regulations aimed at protecting water quality and the wider environment under agri-environmental schemes. Specifically, we review policy instruments that protect water for recreational use, their impacts and the challenges they pose for rural development against current requirements to increase public awareness and participation. In Ireland, there is limited experience in public participation in water quality protection and restoration and we highlight how this can be addressed by focussing on the specific contribution of water quality in rural areas in relation to the provision of recreational ecosystem services. These services provide the infrastructure for much of Ireland\u27s rural tourism sector. In this context, emerging participatory approaches to policy implementation are also assessed as national and local government prioritise community engagement for the second cycle under the EU Water Framework Directive (WFD)
    corecore